$Langage\ C\ \textit{(V. Granet)}$

Durée: 2h	Aucun document autorisé - Téléphones interdits				
Nom chinois:	Nom Pinyin:				
Numéro étudiant :	Classe:				
Notez que les affirmations (ant entreront pour partie dans la note s	écédents, conséquents, rôles, et invariants) dans vos codes C finale.				
l'autre. Par exemple, 220 et 284 son	ombres <u>amiables</u> si chacun est égal à la <u>somme</u> des diviseurs de t des nombres amiables. Écrivez une fonction qui teste si deux conction renvoie un booléen $(0 \text{ ou } \neq 0)$.				

dont la somme des éléments est comprise dans un intervalle $[a;b]$. La matrice et les bornes d'intervalle sont passées en paramètre. Si une telle ligne n'existe pas, la fonction renvoie -1 .							

	rnôme $p(x)$ est représenté par un tableau tel que l'élément d'indice i est égal au coefficient utilisant les déclarations suivantes :								
	#define DEGREMAX 40 typedef double polynome[DEGREMAX];								
Écrivez luation de	z la fonction eval qui prend en paramètre un polynôme p et un réel x qui renvoie l'évaper $p(x)$ selon la méthode de Hörner :								
	$p(x) = (((\dots(p[n] \times x + p[n-1]) \times x + \dots + p[1]) \times x + p[0]$								

ead comme suit : ne	ad < fich.txt.		