
Université de Nice-Sophia Antipolis POLYTECH
ELSE3-FISE 2025–2026

Examen de Info C

Durée : 1h
Aucun document autorisé
Mobiles interdits

Notez que les affirmations (antécédents, conséquents, rôles, et invariants) dans vos codes C
entreront pour partie dans la note finale.

▶ 1. Combien de mode(s) transmission des paramètres existe(nt) en C ? Cochez une seule réponse !

□ un seul, la transmission par référence.
□ un seul, la transmission par valeur.
□ deux, transmissions par valeur et par référence.
□ zéro.

Question sur 1 pt

Réponse : un seul mode de transmission par valeur.

. .

▶ 2. Dans l’appel de procédure lire(x), x est

□ un paramètre donné ;
□ un paramètre résultat ;
□ un paramètre donné et résultat.
□ zéro.

Question sur 1 pt

Réponse : x est paramètre résultat.

. .

▶ 3. Expliquez de façon claire et synthétique la différence entre les énoncés tantque, répéter et
pourtout.

Question sur 2 pts

Ce sont 3 énoncés itératifs qui permettent d’exécuter répétitivement un ou plusieurs énoncés.

1

Pour les énoncés tantque et répéter le nombre d’itérations dépend d’un prédicat d’achèvement
booléen. On utilise l’énoncé tantque lorsque le nombre d’itérations peut être, au minimum, égal à
0, et l’énoncé répéter lorsqu’il y a au moins une itération. Pour ces deux énoncés, il faut s’assurer de
la finitude la boucle, c’est-à-dire que le prédicat booléen est vérifié. En revanche, l’énoncé pourtout
est utilisé lorsqu’on connaît statiquement (à l’avance) le nombre d’itérations. Cet énoncé ne possède
pas de prédicat d’achèvement booléen, et garantit donc sa finitude. Toutefois, l’énoncé for de C,
n’est pas un « véritable » énoncé pourtout, puisqu’il contient un prédicat d’achèvement booléen,
et qu’il faudra donc vérifier sa finitude. Enfin, ces 3 énoncés itératifs possèdent un invariant de
boucle qui décrit leur sémantique.

. .

▶ 4. À partir de l’antécédent suivant :
// jour, mois et année : 3 variables de type int qui représentent une date valide

écrivez en C le fragment de code qui calcule la date de la veille. Vous pouvez utiliser la fonction
joursDansMois qui renvoie le nombre de jours d’un mois d’une année donnée.

Question sur 3 pts
// jour, mois et année : 3 entiers qui représentent une date valide
if (jour >1)

jour --;
else

// 1er jour du mois
if (mois >1)

// la veille est le dernier jour du mois précédent
jour = joursDansMois (--mois , année);

else {
// 1er jour de l’année ⇒ la veille est le 31/12 de l’année précédente
jour = 31;
mois = 12;
année --;

}
// jour, mois et année est la date de la veille

. .

▶ 5. Écrivez en C une fonction somme qui lit sur l’entrée standard n entiers (int) et renvoie leur
somme. Cette fonction possède un seul paramètre, le nombre n d’entiers > 0.

Question sur 3 pts
/*

* antécédent : n>0
* rôle : lit n entiers sur l’E/S et renvoie leur somme
*/

int somme(const int n) {
assert (n >0);
int som =0;
for (int i=0; i<n; i++) {

int x;
scanf("%d", &x);
som +=x;

2

// ∀k ∈ [0, i], som =
∑i

k=0 xk

}
// ∀k ∈ [0, n[, som =

∑i=n−1
k=0 xk

return som;
}

. .

▶ 6. Écrivez la fonction booléenne estPremier qui teste si son paramètre n (un int ⩾ 2) est premier
ou non. Rappel : un nombre premier admet uniquement deux diviseurs distincts 1 et lui-même.
Pensez à minimiser le nombre d’itérations !

Question sur 4 pts
/*

* Antécédent : n⩾ 2
* Rôle : renvoie true si n est premier et false sinon
*/

bool estPremier (const int n) {
assert (n >=2);
const int rac2N = sqrt(n);
for (int i=2 ; i<= rac2N ; i++) {

if ((n%i) == 0)
// i est un diviseur ⇒ n non premier
return false;

// Invariant : ∀k ∈ [2; i], n mod k ̸= 0
}
// Invariant : ∀k ∈ [2; ⌊√

n⌋], n mod k ̸= 0 ⇒ n est premier
return true;

}

. .

En C, un entier non signé peut être dénoté de façon décimale (une suite de chiffres de 0 à
9), de façon octale (une suite de chiffres de 0 à 7 préfixée par 0) ou de façon hexadécimale (une
suite de chiffres de 0 à 9 et de lettres de A à F ou de a à f préfixée par 0x ou 0X). Les notations
suivantes sont valides : 8764 0765 0xFF 0xFa3 et correspondent aux entiers 8764 501 255 4003.

▶ 7. Écrivez la fonction lireEntier qui calcule et renvoie le prochain entier non signé lu sur l’entrée
standard. Cet entier peut être précédé par des espaces. Vous pourrez utiliser les fonctions isspace,
isdigit et isxdigit qui testent si leur paramètre (un caractère) est, respectivement, un espace, un
chiffre décimal (’0’-’9’) et un chiffre hexadécimal (’0’-’9’-’A’-’F’/’a’-’f’). Utilisez la fonction
assert pour traiter les cas d’erreur. Cette fonction lireEntier possède l’en-tête suivant :
/* Antécédent : le caractère courant de l’entrée standard est un espace ou un chiffre [0 -9]

* Rôle : renvoie l’entier non signé lu au format C
*/

int lireEntier (void) {

Question sur 6 pts
/*

* Rôle : renvoie true si c est un chiffre octal [0 -7]]et false sinon
*/

3

bool isoctal (const int c) {
return c>=’0’ && c<= ’7’;

}

/*
* Antécédent : base = 8, 10 ou 16

* Rôle : renvoie true si le c est un chiffre de la base b et false sinon
*/

bool dansLaBase (const int c, const int b) {
switch (b) {

case 8 : return isoctal (c);
case 10 : return isdigit (c);
case 16 : return isxdigit (c);

}
// pour faire plaisir au compilateur
return false;

}

/* Antécédent : un entier non -signé , en notaton octale , décimale ou hexadécimle ,
* éventuellement précédé par des espaces , est disponible sur l’E/S
* Rôle : renvoie l’entier non signé lu au format C
*/

int lireEntier (void) {
int base = 10; // nombre décimal par défaut
int c;
// sauter les éventuels espaces
while (isspace (c= getchar ()));
// c est un chiffre
if (c== ’0’)

// lire un nombre octal ou hexadécimal
if ((c= getchar ()) == ’X’ || c == ’x’) {

// notation hexadécimale
base = 16;
c= getchar ();

}
else

// notation octale
base = 8;

//
int n=0;
// c est un chiffre 0-9/A-F/a-f OU un caractère quelconque
// i.e. cas où il n’y avait qu’un seul 0 sur l’entrée standard
while (dansLaBase (c, base)) {

// le chiffre est valide dans sa base
n = n*base + (isdigit (c) ? c-’0’ : toupper (c)-’A’+10);
// passer au caractère suivant
c= getchar ();

}
// c n’est pas un chiffre de la base
// le remettre dans le fichier d’entrée standard
ungetc (c, stdin);
return n;

}

. .

4

