Contrôle de Info C

Durée: 1h	Aucun document autorisé
Nom:	Prénom:
	es affirmations (antécédents, conséquents, rôles, et invariants) dans vos codes C partie dans la note finale.
1. Un liste linéa	ire, <u>comme vue en TD</u> , est définie dans liste.h comme suit :
<pre>typedef typedef str T elt; struct no } *Liste;</pre>	
extern List	e initListe(void); longueur(const Liste); me(const Liste, const int);
extern void	<pre>insérer(Liste *, const int, const T); supprimer(Liste *, const int);</pre>
	édures ajouterEnTête et supprimerEnQueue qui, respectivement, ajoute un élément ste, et supprime le dernier élément d'une liste.

et score (un double $\in [0.0; 100.0]$).	
3. Un fichier binaire (pas de texte!), contient une suite de <u>trames</u> . Chaque trame représ un Étudiant et contient successivement, un entier n (de type int > 0), suivi de n caract alphabétiques (pas de '\0') pour le nom de l'étudiant, suivis d'un réel double qui représente score. Écrivez la <u>procédure lireTrames qui</u> , à partir d'un fichier de trames, construit une liste (tListe) d'Étudiant (T=Étudiant). Cette procédure possède deux paramètres, le nom du fichie la liste à construire. Le fichier est correctement formé.	ère soi typ

<u>ames</u> qui correspoi	nuent aux etuur	ants dont le sc	ore est supérieu	r ou egal a n .	

s vérifications	s trames dont les scores sont su nécessaires.	périeurs ou égaux au score	minimal. Vous fere
	ication munie d'une interface grap lépendance entre le <i>modèle</i> et la		x, expliquez commen