Contrôle de Info C

Durée: 1h30		Aucun document autorisé
Nom:	Prénom :	
Notez que les affirm entreront pour partie d		s, rôles, et invariants) dans vos codes C
1 Sorte de ca	ractères	
	espaces et les autres (le complés	gories de caractères : les lettres alphabé- mentaire). Les valeurs de ce type seront
	ypeDeCar qui prend en paramètro orteCar précédemment défini). U	e un caractère et qui renvoie la catégorie ftilisez les fonctions de ctype.h.

2 Plan cartésien

On représente les coordonnées d'un point p du plan cartésien par deux réels (**double**) x et y tels que p=(x,y).

Écrivez en C la	fonction pente	qui renvoie l	a pente d'une	droite qui pass	se par 2 points	$\operatorname{distinc}$
. Écrivez en C la e coordonnées (<i>x</i>	$rac{ ext{fonction}}{ ext{font}}$ pente (x_2,y_2)	qui renvoie l).	a pente d'une	droite qui pass	se par 2 points	$\operatorname{distinc}$
Écrivez en C la e coordonnées (x)	$rac{ ext{fonction}}{1,y_1) ext{ et } (x_2,y_2)$	qui renvoie l).	a pente d'une	droite qui pass	se par 2 points	distino
Écrivez en C la e coordonnées (x	$\frac{\text{fonction}}{1, y_1}$ et (x_2, y_2)	qui renvoie l).	a pente d'une	droite qui pass	se par 2 points	distino
Écrivez en C la e coordonnées (x	$rac{ ext{fonction}}{ ext{fonction}} ext{ pente} \ ext{1}, y_1) ext{ et } (x_2, y_2)$	qui renvoie l).	a pente d'une	droite qui pass	se par 2 points	distino
Écrivez en C la e coordonnées (x	$\frac{\text{fonction}}{1, y_1}$ et (x_2, y_2)	qui renvoie l).	a pente d'une	droite qui pas	se par 2 points	distino
Écrivez en C la e coordonnées (x	$\frac{\text{fonction}}{1, y_1}$ et (x_2, y_2)	qui renvoie l).	a pente d'une	droite qui pass	se par 2 points	distino
. Écrivez en C la e coordonnées (x	$rac{ ext{fonction}}{1,y_1) ext{ et } (x_2,y_2)$	qui renvoie l).	a pente d'une	droite qui pas	se par 2 points	distine
. Écrivez en C la e coordonnées (x	$\frac{\text{fonction}}{1, y_1}$ et (x_2, y_2)	qui renvoie	a pente d'une	droite qui pass	se par 2 points	disting
. Écrivez en C la e coordonnées (x	$rac{ ext{fonction}}{1,y_1) ext{ et } (x_2,y_2)$	qui renvoie l).	a pente d'une	droite qui pass	se par 2 points	distino
. Écrivez en C la e coordonnées (x	$rac{ ext{fonction}}{1, y_1) ext{ et } (x_2, y_2)$	qui renvoie]).	a pente d'une	droite qui pass	se par 2 points	disting
. Écrivez en C la e coordonnées (x	$rac{ ext{fonction}}{1, y_1) ext{ et } (x_2, y_2)$	qui renvoie l).	a pente d'une	droite qui pass	se par 2 points	distino

- ▶ 5. Écrivez en C la fonction main qui :
 - 1. déclare les variables $\mathtt{Ax}, \mathtt{Ay}, \mathtt{Bx}, \mathtt{By}$ de type **double** qui représentent les coordonnées de 2 points du plan A et B;
 - 2. lit sur l'entrée standard 4 réels double et les affecte aux variables Ax, Ay, Bx, By;
 - 3. écrit sur la sortie standard la distance entre les points A et B;
 - 4. écrit sur la sortie standard l'équation y = ax + b de la droite qui passe par A et B. Attention de bien traiter tous les cas possibles.

Par exemple, l'exécution de cette fonction main pourra produire (format à respecter) :

A(x,y) ? (3.2,-8) B(x,y) ? (-5.8,10.23)
distance(A,B) = 20.330590 l'équation de la droite passant par A et B est : $y = -2.03x - 1.52$

-	
	·