Nom:	Prénom :	
POLYTECH – ELEC	3	2019-2020
\mathbf{C}	ontrôle de Langage (\mathbb{S}^{-1}
Durée : 1h	A	ucun document autorisé
avec des affirmations sign prendrez soin de définir l	que vous écrirez doivent être vificatives (antécédents, consé es bons paramètres et les bor des fonctions auxiliaires si d	quents, invariants). Vous ns types des données ma
Exercice 1		
une note entre 0 et m à moyenne de ses notes <u>sans</u> le jury est formé de 7 per 7.2, 9.3, 7.2 et 12.1, avec calcul de la moyenne sero Écrivez la <u>fonction</u> mo réels double, et la valeur notes selon la règle de cal	sportive est formé de n mem chaque concurrent. La note la meilleure note, $\underline{\mathbf{ni}}$ la plus m sonnes, et si le sportif a obte une note maximale $m=15$, l nt 5.1 , 8.5 , 7.2 , 7.2 et 9.3 . yenne qui prend comme par maximale des notes, et qui lcul donnée ci-dessus. Si une it sur la sortie d'erreur stand	e finale du sportif est la nauvaise. Si, par exemple nu les notes 4.3, 5.1, 8.5 es notes retenues pour le amètres un tableau de renvoie la moyenne des note n'est pas valide, un

Exercice 2

 $RLE\ (Run\ Length\ Encoding)$ est une technique de compression de données, anciennement utilisée pour la compression d'images. Le principe est rudimentaire et très simple : une séquence de caractères c identiques est remplac'ee par :

c marqueur ${\cal L}$

où **marqueur** est un caractère spécial, si possible, peu fréquent dans la suite de caractères à comprimer et L la longueur de la séquence de caractères c codée sur $\frac{1}{2}$ seul caractère. Si L est codée sur un caractère, cela veut dire que ce codage ne comprime qu'une suite d'au plus 9 caractères identiques. Si la suite fait plus de 9 caractères, les 9 premiers seront comprimés, puis la suite de la séquence sera considérée comme une nouvelle séquence à coder. Lorsque le marqueur apparaît dans les données à comprimer, il est remplacer par « **marqueur** 0 ».

Par exemple, si on choisit comme marqueur le caractère #, la suite bbbbb##aaaaaaaabb#xxx sera codée b#5#0#0a#9a#2b#2#0x#3.

ment) et qui écrit sur la sortie standard (avec putchar uniquement) sa forme
comprimée selon la méthode RLE précédente avec '#' comme marqueur. Votre programme indiquera le taux de compression obtenu $(e.g.~92.31\%$ avec l'exemple
précédent).

Exercice 3

Soit une matrice d'entiers $n \times n$, écrivez la <u>fonction</u> somme qui renvoie la somme des valeurs des éléments qui se trouvent dans la demi-matrice <u>supérieure</u> (sans la diagonale). Attention aux indices!

<u>Par exemple,</u> pour la matrice 4×4 donnée ci-dessous, la fonction renverra la somme des valeurs en rouge, c'est-à-dire 36.

$\begin{vmatrix} 1 \\ 5 \\ 9 \\ 13 \end{vmatrix}$	6 10 14	3 7 11 15	4 8 12 16