Contrôle de Langage C

Toutes les fonctions que vous écrirez doivent être clairement commentées avec des affirmations significatives (antécédents, conséquents, invariants). Vous prendrez soin de définir les bons paramètres et les bons types des données manipulées. Pensez à définir des fonctions auxiliaires si cela est nécessaire.

 \blacktriangleright 1. Soit les quatre affectations suivantes :

```
 \{y = x^2, d = 2x - 1\} 
d \leftarrow d + 2 
\{ \dots \dots \} 
y \leftarrow y + d 
\{ \dots \dots \} 
d \leftarrow d + 2 
\{ \dots \dots \} 
y \leftarrow y + d 
\{ \dots \dots \}
```

Appliquez la règle de déduction de l'instruction d'affectation et écrivez suite d'affirmations nécessaires pour obtenir le conséquent final.	la

➤ 2. Un magasin de reprographie propose un tarif dégressif. De 1 à 20 photocopies le prix est 10 centimes l'unité, de 21 à 99 le prix est 8 centimes l'unité et au del de 100 le prix est 6 centimes l'unité. Dans le calcul du tarif final, le prix unitair est le même quel que soit le nombre de photocopies. Écrivez un programme qui demande à l'utilisateur le nombre de photocopies qu'il veut réaliser et qu'affiche le prix qu'il devra payer.	là re C
	_
	_
	_
	_
	_
	_
	_

plan. On ra	en C la fon ppelle que p $\sqrt{(x_1 - x_2)}$	our 2 poin	$ts(x_1, y_1)$				
	V (w1 w2)	1 (91 8	·				
points disti 4. Écrivez	sidère qu'un ncts du plar en C la <u>fon</u> un vrai triar	n cartésien <u>ction</u> boole	. Chaque j éenne est!	point pos JnVraiTri	sède une angle qu	coordor ui teste	nnée $(x,$ si 3 poi
points disti 4. Écrivez définissent	ncts du plai en C la <u>fon</u>	n cartésien ction boole ngle. Rapp	. Chaque j éenne est el : la som	point pos JnVraiTri me des lo	sède une angle qu ongueurs	coordor ui teste de deux	nnée $(x,$ si 3 poi côtés d
points disti 4. Écrivez définissent	ncts du plar en C la <u>fon</u> un vrai tria	n cartésien ction boole ngle. Rapp	. Chaque j éenne est el : la som	point pos JnVraiTri me des lo	sède une angle qu ongueurs	coordor ui teste de deux	nnée $(x,$ si 3 poi côtés d
points disti 4. Écrivez définissent	ncts du plar en C la <u>fon</u> un vrai tria	n cartésien ction boole ngle. Rapp	. Chaque j éenne est el : la som	point pos JnVraiTri me des lo	sède une angle qu ongueurs	coordor ui teste de deux	nnée $(x,$ si 3 poi côtés d
points disti 4. Écrivez définissent	ncts du plar en C la <u>fon</u> un vrai tria	n cartésien ction boole ngle. Rapp	. Chaque j éenne est el : la som	point pos JnVraiTri me des lo	sède une angle qu ongueurs	coordor ui teste de deux	nnée $(x,$ si 3 poi côtés d
points disti 4. Écrivez définissent	ncts du plar en C la <u>fon</u> un vrai tria	n cartésien ction boole ngle. Rapp	. Chaque j éenne est el : la som	point pos JnVraiTri me des lo	sède une angle qu ongueurs	coordor ui teste de deux	nnée $(x,$ si 3 poi côtés d
points disti 4. Écrivez définissent	ncts du plar en C la <u>fon</u> un vrai tria	n cartésien ction boole ngle. Rapp	. Chaque j éenne est el : la som	point pos JnVraiTri me des lo	sède une angle qu ongueurs	coordor ui teste de deux	nnée $(x,$ si 3 poi côtés d
points disti 4. Écrivez définissent	ncts du plar en C la <u>fon</u> un vrai tria	n cartésien ction boole ngle. Rapp	. Chaque j éenne est el : la som	point pos JnVraiTri me des lo	sède une angle qu ongueurs	coordor ui teste de deux	nnée $(x,$ si 3 poi côtés d
points disti 4. Écrivez définissent	ncts du plar en C la <u>fon</u> un vrai tria	n cartésien ction boole ngle. Rapp	. Chaque j éenne est el : la som	point pos JnVraiTri me des lo	sède une angle qu ongueurs	coordor ui teste de deux	nnée $(x,$ si 3 poi côtés d
points disti 4. Écrivez définissent	ncts du plar en C la <u>fon</u> un vrai tria	n cartésien ction boole ngle. Rapp	. Chaque j éenne est el : la som	point pos JnVraiTri me des lo	sède une angle qu ongueurs	coordor ui teste de deux	nnée $(x,$ si 3 poi côtés d
points disti 4. Écrivez définissent	ncts du plar en C la <u>fon</u> un vrai tria	n cartésien <u>ction</u> boole ngle. Rapp	. Chaque j éenne est el : la som	point pos JnVraiTri me des lo	sède une angle qu ongueurs	coordor ui teste de deux	nnée $(x,$ si 3 poi côtés d
points disti 4. Écrivez définissent	ncts du plar en C la <u>fon</u> un vrai tria	n cartésien <u>ction</u> boole ngle. Rapp	. Chaque j éenne est el : la som	point pos JnVraiTri me des lo	sède une angle qu ongueurs	coordor ui teste de deux	nnée $(x,$ si 3 poi côtés d
points disti 4. Écrivez définissent	ncts du plar en C la <u>fon</u> un vrai tria	n cartésien <u>ction</u> boole ngle. Rapp	. Chaque j éenne est el : la som	point pos JnVraiTri me des lo	sède une angle qu ongueurs	coordor ui teste de deux	nnée $(x,$ si 3 poi côtés d
points disti 4. Écrivez définissent	ncts du plar en C la <u>fon</u> un vrai tria	n cartésien <u>ction</u> boole ngle. Rapp	. Chaque j éenne est el : la som	point pos JnVraiTri me des lo	sède une angle qu ongueurs	coordor ui teste de deux	nnée $(x,$ si 3 poi côtés d

	de façon claire				
sur la sortie standard con	fonction main que standard le no ntient les coordo trée standard co	mbre triangle nnées des 3 p	es <u>vrais</u> lus. C oints d'un tri	Chaque ligne d angle. La toute	e l'entré