Contrôle de Langage C

Durée: 0h45	Aucun document autorisé
formée de 2 entiers et d'un carac sortie standard le résultat de sor	ur l'entrée standard une opération arithmétique etère ('+', '-', '*' ou '/') et qui écrit sur la évaluation. Par exemple, si on saisit 18 - 5, iserez l'énoncé switch. Vous penserez aussi à
On représente les coordonnées (double) x et y tels que $p = (x, y)$	s d'un point p du plan cartésien par deux réels). On dispose de la fonction :
double distance(double x	1, double y1, double x2, double
qui renvoie la distance entre 2 poi d'un point $p = (x, y)$ par rapport	nts (x_1, y_1) et (x_2, y_2) . On appelle \bar{p} la distance à l'origine $(0, 0)$.
2. Écrivez en C la fonction compa	re qui compare 2 points (4 réels double) $p_1 =$

 (x_1, y_1) et $p_2 = (x_2, y_2)$ et renvoie :

-1 si $\bar{p_1} < \bar{p_2}$

${f 0} \ { m si} \ ar{p_1} = ar{p_2}$	
$1 \ \ \mathrm{si} \ \bar{p_1} > \bar{p_2}$	
F1 - F2	
3. Écrivez en C une fonction qui calcule le <u>pgcd</u> de deux entiers naturels On rappelle que le plus grand commun diviseur de deux entiers naturels est l'entier naturel le plus grand qui les divise tous les deux. Il est tel q	positifs
$pgcd(a,b) = \begin{cases} pgcd(a-b,b) \text{ si } a > b\\ pgcd(a,b-a) \text{ si } a < b \end{cases}$	
Vous procéderez par de façon <u>itérative</u> par soustractions successives leurs a et b , jusqu'à ce que a et b soient égaux. Vous donnerez l'invaria affirmations nécessaires.	