Nom:	Prénom:	Groupe:

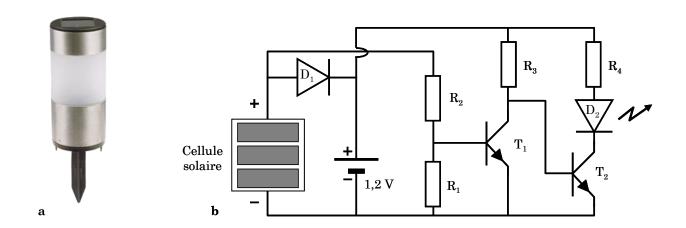
ECOLE POLYTECHNIQUE UNIVERSITAIRE DE NICE SOPHIA-ANTIPOLIS

Cycle Initial Polytech Première Année Année scolaire 2009/2010

Epreuve d'électronique analogique N°3 CORRECTION

Mercredi 28 Avril 2010 Durée : 1h30

- □ Cours et documents non autorisés.
- □ Calculatrice de l'école autorisée.
- □ Vous répondrez directement sur cette feuille.
- □ Tout échange entre étudiants (gomme, stylo, réponses...) est interdit
- □ Vous êtes prié:
 - d'indiquer votre nom et votre prénom.
 - d'éteindre votre téléphone portable (- 1 point par sonnerie).


RAPPELS:

Lien entre le courant, le temps et la charge $I = \frac{dQ}{dt} \label{eq:I}$

Forme générale de la tension aux bornes de la capacité d'un circuit R.C:

$$V_C(t) = A. \exp\left(-\frac{t}{R.C}\right) + B$$

Dans cet exercice on s'intéresse au circuit électronique qui gère le fonctionnement des bornes solaires de jardin dont un exemple est donné à la figure (I.1.a). Le jour, une cellule photovoltaïque recharge une pile qui alimente une LED la nuit. Le circuit à étudier est donné à la figure (I.1.b).

Figure I.1. Les deux transistors sont identiques avec $\beta = 100$, $V_{CEsat} = 0$, $V_{BE} = 0.6$ V. La résistance de la diode base émetteur sera considérée comme nulle. Si le transistor est saturé, on considérera que le courant de base reste inchangé. Diode $D_1 : V_{S1} = 0.2$ V, $R_{S1} = 0.2$ Ω. Diode LED $D_2 : V_{S2} = 0.7$ V, $R_{S2} = 10$ Ω. $R_1 = 1000$ kΩ, $R_2 = 100$ kΩ, $R_3 = 1.2$ kΩ, $R_4 = 4$ Ω.

I.1. Fonctionnement de jour

On considère que la cellule photovoltaïque ne peut pas mettre la pile en surcharge et que pour ce circuit elle fournit une tension de $\underline{\mathbf{E}_S} = \mathbf{1,4} \ \mathbf{V}$ pour un courant de 20 mA. La tension de la pile est $\underline{\mathbf{E}_P} = \mathbf{1,2} \ \mathbf{V}$.

I.1.a. Donner la valeur du courant de base, I_{B1} , du transistor T_1 . On ne considèrera que la cellule solaire et les résistances R_1 et R_2 . (1.5 pts)

$$E_{th} = \frac{R_1}{R_1 + R_2} E_S = \frac{100}{100 + 10} 1,4 = 1,27V$$

$$R_{th} = \frac{R_1 R_2}{R_1 + R_2} = \frac{1000.100}{1000 + 100}.10^3 = 90,9 \text{k}\Omega$$

Après la détermination du générateur de Thévenin équivalent, on calcul le courant de base :

$$I_{B1} = \frac{E_{th} - V_{BE}}{R_{th}} = \frac{1,27 - 0,6}{90.9.10^3} = 7,37\mu A$$

I.1.b. Donner la valeur de la tension V_{CE} du transistor T_1 et la valeur du courant de collecteur. (1 pt)

On sait que $I_{C1} = \beta .I_B 1 = 737 \mu A$ et donc $V_{CE} = E_P - R_3 .I_{C1} = 0.32 \text{ V} > V_{CEsat} = 0 \text{ V}$. Le transistor est en régime linéaire.

I.1.c. En déduire le régime de fonctionnement du transistor T_2 et donc si la LED est allumée ou éteinte. (1 pt)

Le transistor T_2 est bloqué car $V_{BE2} = 0.32 \text{ V} < 0.6 \text{ V}$ et la LED est éteinte.

I.1.d. Donner la valeur du courant délivré à la pile. (0.5 pt)

Le courant qui est consommé par le transistor T_1 est égale à la somme de trois courants, celui du collecteur (737 μ A), celui de la base (7,37 μ A) et le courant qui traverse la résistance R_1 qui est égale à :

$$I_P = \frac{V_{BE}}{R_1} = \frac{0.6}{1000.10^3} = 0.6 \mu A$$

On a donc Ipile = 20 - (0.737 + 0.00737 + 0.0006) = 19.26 mA

I.1.e. Si la borne est au soleil durant 10 h, donner la charge emmagasinée par la pile. On considérera que la pile est initialement déchargée (1 pt)

$$Q = Ipile.10.60.60 = 693 C$$

I.2. Fonctionnement de nuit

A la nuit tombée, la tension aux bornes de la cellule solaire devient nulle.

I.2.a. Donner, en le justifiant, le régime de fonctionnement du transistor T_1 . On n'oubliera pas d'expliquer les deux rôles de la diode D_1 . (1.5 pts)

La diode D_1 empêche la pile d'alimenter la base du transistor T_1 qui est bloqué. D_1 empêche aussi la pile de se décharger au travers de la cellule solaire.

I.2.b. Donner la valeur du courant de base du transistor T_2 . (0.5 pt)

$$I_{B2} = \frac{E_P - V_S}{R_3} = \frac{1{,}2{-}0{,}6}{1200} = 500 \mu A$$

I.2.c. Donner la valeur de la tension V_{CE} du transistor T_2 et son régime de fonctionnement. (1 pt)

$$V_{CE2} = E_P - V_{S2} - (R_4 + R_{S2})\beta I_{B2} = 1,2 - 0,7 - (10 + 4) \times 100 \times 500 \times 10^{-6} = -0,2V$$

donc le transistor est saturé et $V_{CE2} = 0 \text{ V}$.

I.2.d. Donner la valeur du courant qui traverse la LED D₂. (1 pt)

On a
$$I_{C2} = \frac{1.2 - V_{CEsat} - V_{S2}}{R_4 + R_{S2}} = 35.7 \text{mA}$$

I.2.e. Pendant combien d'heures la borne de jardin va-t-elle être allumée ? (1 pt)

Le courant consommé par le transistor T₂ se compose du courant de base (0,5 mA), du courant de collecteur (35,7 mA) et du courant qui a pour origine les électrons en provenance de l'émetteur et qui rejoignent la base car le transistor est saturé. On ne peut évaluer ce dernier courant donc on supposera que le courant total est de 36,2 mA et on garde à l'esprit que le courant consommé et plus important.

Pour calculer le temps, on part de la relation $I = \Delta Q/\Delta t$ où ΔQ est la charge emmagasinée par la pile et I le courant consommé par le transistor

$$Temps = \frac{\Delta Q}{I} = \frac{693}{0.0255} = 19143s = 5h19mn \quad \text{qui est une valeur surestimée}.$$

On se propose d'étudier un circuit qui permet la détection d'une impulsion très brève (très courte durée) comme un choc sur un tuyau, une émission de lumière infra rouge... Cette impulsion est convertie en impulsion électrique plus longue qui permet d'allumer une LED. Le circuit que nous allons étudier est donné à la figure (II.1) et correspond à un oscillateur Abraham BLOCH <u>modifié</u> (PARTIE 1) suivi d'un étage qui alimente une LED (PARTIE 2). La PARTIE 2 ne sera pas étudiée. V_E est une entrée et représente la brève impulsion qui a été convertie en tension.

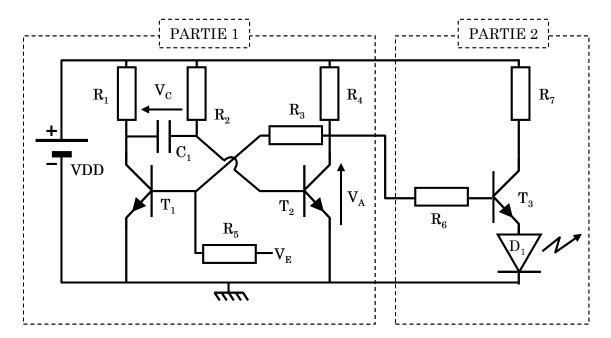


Figure II.1. $R_1 = R_4 = 1 \text{ k}\Omega$, $R_2 = 44 \text{ k}\Omega$, $R_3 = 1 \text{ k}\Omega$, $R_5 = 14 \text{ k}\Omega$, $C_1 = 31 \text{ }\mu\text{F}$. Les trois transistors sont identiques : $\beta = 100$, $\underline{V_{CEsat} = 0 \text{ }V}$, pour la diode de base $R_S = 0 \text{ }k\Omega$ et $V_S = 0.6 \text{ V}$. On considérera que 1+ $\beta \approx \beta$ (soit $I_C \approx I_E$). La tension d'alimentation est $V_{DD} = 9 \text{ V}$.

II.1. Donner les valeurs min et max que peut prendre la tension VA. (0.5 pt)

$$V_{Amin} = V_{CEsat} = 0 V$$

$$V_{Amax} = V_{DD} = 9 V$$

II.2. Etude de l'état stable : fonctionnement hors impulsion

Cet état stable, <u>invariant au cours du temps</u>, est obtenu en absence d'impulsion : $V_E = 0 \text{ V}$. <u>Dans ce cas T_2 est passant et T_1 est bloqué.</u>

II.2.a. Quelle est la valeur de la tension V_{BE2} ? (0.5 pt)

$$V_{BE2} = 0.6 \text{ V}$$

II.2.b. Puisque <u>aucune tension et aucun courant ne varie au cours du temps</u>, donner la valeur de la tension V_{C1} aux bornes du condensateur. (0.5 pt)

Le condensateur est chargé d'où $V_C = V_{DD} - V_{BE2} = 9 - 0.6 = 8.4 \text{ V}$

II.2.c. Déterminer la valeur du courant, I_{B2}, dans la base du transistor T₂. (0.5 pt)

$$I_{B2} = (V_{DD} - V_{BE2}) / R_2 = 191 \mu A$$

II.2.d. En supposant que le courant qui passe dans la résistance R_3 est négligeable par rapport au courant du collecteur de T_2 , déterminer si ce transistor est saturé et justifier que le transistor T_1 est bloqué. (0.5 pt)

 $V_{CE2} = V_{DD} - \beta.R_4$. $I_{B2} = -10.1 \text{ V} < V_{CEsat}$ donc le transistor est saturé et $V_{CE2} = 0$. La tension V_{BE1} est nulle et T_1 est bloqué.

II.3. Etude de l'état instable : fonctionnement après une impulsion

En présence d'une brève impulsion (de quelque μs par exemple), V_E devient égale à 5 V. On définit cet instant comme l'origine des temps.

II.3.a. A l'apparition de l'impulsion et en tenant compte de votre réponse à la question (II.2.d), donner la valeur de la tension V_{BE1} à t=0. On supposera le courant I_{B1} comme négligeable si le transistor T_1 est passant. (0.5 pt)

$$V_{BE1} = \frac{R_5}{R_5 + R_3} V_{DD} = 0.6V$$

II.3.b. En présence de l'impulsion très courte, le transistor T_1 se sature. Donner la valeur de la tension V_{BE2} à t = 0 et en déduire l'état du transistor T_2 . (0.5 pt)

La charge de la capacité C_1 impose V_{BE2} = 0,6 - 9 = - V_C = - 8,4 V et le transistor T_2 se bloque.

II.3.c. Après la disparition de l'impulsion, le transistor T_1 reste saturé. Déterminer l'expression de l'évolution temporelle de la tension V_{BE2} du transistor T_2 en fonction du temps, de C_1 , R_2 , V_{DD} et 0.6 V (2 pts)

$$\text{La forme générale de l'expression de V_{BE2} est}: \ V_{BE2}\big(t\big) = A. \exp\!\!\left(-\frac{t}{R_2.C_1}\right) + B$$

6

Avec
$$V_{BE2}(t=0) = 0.6 - V_{DD} = A + B$$
 et $V_{BE2}(t \rightarrow \infty) = V_{DD} = B$

Soit:
$$V_{BE2}(t) = (0.6 - 2V_{DD}) \cdot exp(-\frac{t}{R_2 \cdot C_1}) + V_{DD}$$

II.3.d. Donner l'expression et la valeur de t_1 , temps qu'il faut attendre pour débloquer T_2 et donc au temps durant lequel la LED (PARTIE 2) sera allumée. (1 pt)

$$\begin{split} \text{Il} & \quad \text{faut} \quad \quad \text{que} \quad \quad V_{BE2} \big(t_1 \big) = \big(0.6 - 2 V_{DD} \big) . \exp \! \left(- \frac{t}{R_2.C_1} \right) + V_{DD} = 0.6 V \qquad \quad \text{soit} : \\ t_1 & = -R_2.C_1. \ln \! \left(\frac{0.6 - V_{DD}}{0.6 - 2.V_{DD}} \right) = 1 s \end{split}$$

II.3.e. Une fois la tension $V_{BE2} = 0.6$ V atteinte, expliquer sans calcul comment le circuit revient à l'état stable. On suivra successivement l'état du transistor T_2 , l'état du transistor T_1 et la charge de la capacité C_1 avec la tension V_C . (1 pt)

Lorsque V_{BE2} = 0,6 V le transistor T_2 se débloque et devient saturé. Donc la tension V_{BE1} devient nulle et T_1 se bloque. La capacité C_1 va se charger à travers R_1 pour arriver à la tension V_C = V_{DD} – 0,6 V

II.3.f. Sur la figure (II.2), tracer l'évolution des tensions V_{CE1} , V_{CE2} et V_{BE1} et V_{BE2} en fonction du temps (2 pts)

II.3.g. Proposer une modification de la PARTIE 1 pour qu'on puisse observer l'état de la LED sans avoir besoin de la PARTIE 2 (0.5 pt)

Il suffit de mettre la LED en série avec la résistance R₁. Lorsque le transistor T₁ est saturé la LED est allumée et lorsqu'il est bloqué, la LED est éteinte.

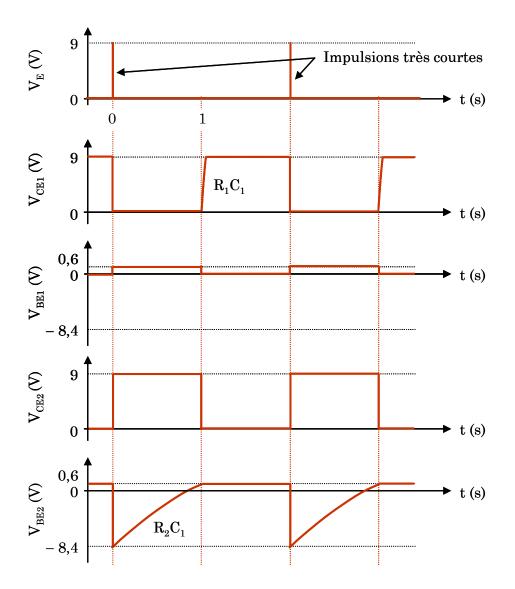


Figure II.2.