Chapter 11
Tessellators and Quadrics

Polygon Tessellation
Create a Tessellation Object
Tessellation Callback Routines
Tessellation Properties
Polygon Definition
Deleting a Tessellator Object
Tessellator Performance Tips
Describing GLU Errors
Backward Compatibility

Quadrics: Rendering Spheres, Cylinders, and Disks
Manage Quadrics Objects
Control Quadrics Attributes
Quadrics Primitives

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 1

Chapter 11
Tessellators and Quadrics

Chapter Objectives
After reading this chapter, you'll be able to do the following:

Render concave filled polygons by first tessellating them into convex polygons, which can be
rendered using standard OpenGL routines.

Use the GLU library to create quadrics objects to render and model the surfaces of spheres ar
cylinders and to tessellate disks (circles) and partial disks (arcs).

The OpenGL library (GL) is designed for low-level operations, both streamlined and accessible to
hardware acceleration. The OpenGL Utility Library (GLU) complements the OpenGL library,
supporting higher—level operations. Some of the GLU operations are covered in other chapters.
Mipmapping @luBuild*DMipmaps() and image scalingluScalelmage})are discussed along with
other facets of texture mapping@hapter 9 Several matrix transformation GLU routines
(gluOrtho2D(), gluPerspective()gluLookAt() gluProject() andgluUnProject() are described in
Chapter 3The use ofjluPickMatrix()is explained irChapter 13The GLU NURBS facilities, which
are built atop OpenGL evaluators, are coveredhapter 120nly two GLU topics remain: polygon
tessellators and quadric surfaces, and those topics are discussed in this chapter.

To optimize performance, the basic OpenGL only renders convex polygons, but the GLU contains
routines to tessellate concave polygons into convex ones, which the basic OpenGL can handle.
Where the basic OpenGL operates upon simple primitives, such as points, lines, and filled polygor
the GLU can create higher—level objects, such as the surfaces of spheres, cylinders, and cones.

This chapter has the following major sections.

"Polygon Tessellationgxplains how to tessellate convex polygons into easier—to—render conve:
polygons.

"Quadrics: Rendering Spheres, Cylinders, and Didkstribes how to generate spheres,
cylinders, circles and arcs, including data such as surface normals and texture coordinates.

Polygon Tessellation

As discussed ifiDescribing Points, Lines, and Polygons" in Chapted@enGL can directly display
only simple convex polygons. A polygon is simple if the edges intersect only at vertices, there are |
duplicate vertices, and exactly two edges meet at any vertex. If your application requires the disple
of concave polygons, polygons containing holes, or polygons with intersecting edges, those polygc
must first be subdivided into simple convex polygons before they can be displayed. Such subdivisi
is calledtessellation, and the GLU provides a collection of routines that perform tessellation. These
routines take as input arbitrary contours, which describe hard—to—render polygons, and they returr
some combination of triangles, triangle meshes, triangle fans, or lines.

Figure 11-1 shows some contours of polygons that require tessellation: from left to right, a concav
polygon, a polygon with a hole, and a self-intersecting polygon.

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 1

F 3
-

]

Figure 11-1 Contours That Require Tessellation

L}

If you think a polygon may need tessellation, follow these typical steps.
1. Create a new tessellation object wgthNewTess()

2. UsegluTessCallback(3everal times to register callback functions to perform operations during
the tessellation. The trickiest case for a callback function is when the tessellation algorithm
detects an intersection and must call the function registered for the GLU_TESS COMBINE
callback.

3. Specify tessellation properties by calligiyTessProperty()The most important property is the
winding rule, which determines the regions that should be filled and those that should remain
unshaded.

4. Create and render tessellated polygons by specifying the contours of one or more closed
polygons. If the data for the object is static, encapsulate the tessellated polygons in a display i
(If you don’t have to recalculate the tessellation over and over again, using display lists is more
efficient.)

5. If you need to tessellate something else, you may reuse your tessellation object. If you are
forever finished with your tessellation object, you may delete it glitbeleteTess()

Note: The tessellator described here was introduced in version 1.2 of the GLU. If you are using an
older version of the GLU, you must use routines describ&dencribing GLU Errors!"To query

which version of GLU you have, ugtuGetString(GLU_VERSIONvhich returns a string with your
GLU version number. If you don't seem to hayteGetString(jin your GLU, then you have GLU

1.0, which did not yet have tlipuGetString(routine.

Create a Tessellation Object

As a complex polygon is being described and tessellated, it has associated data, such as the verti
edges, and callback functions. All this data is tied to a single tessellation object. To perform
tessellation, your program first has to create a tessellation object using theghuNieTess()

GLUtesselator*gluNewTegwoid);
Creates a new tessellation object and returns a pointer to it. A null pointer is returned if the
creation fails.

A single tessellation object can be reused for all your tessellations. This object is required only
because library routines might need to do their own tessellations, and they should be able to do sc
without interfering with any tessellation that your program is doing. It might also be useful to have
multiple tessellation objects if you want to use different sets of callbacks for different tessellations.
typical program, however, allocates a single tessellation object and uses it for all its tessellations.
There’s no real need to free it because it uses a small amount of memory. On the other hand, it ne

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 2

hurts to be tidy.

Tessellation Callback Routines

After you create a tessellation object, you must provide a series of callback routines to be called at
appropriate times during the tessellation. After specifying the callbacks, you describe the contours
one or more polygons using GLU routines. When the description of the contours is complete, the
tessellation facility invokes your callback routines as necessary.

Any functions that are omitted are simply not called during the tessellation, and any information the
might have returned to your program is lost. All are specified by the single routine
gluTessCallback()

void gluTessCallbadkLUtesselator tessobj GLenuntype void (*fn)());
Associates the callback functitmwith the tessellation objet#ssobj The type of the callback is
determined by the parametgpe which can be GLU_TESS BEGIN,
GLU_TESS_BEGIN_DATA, GLU_TESS_EDGE_FLAG, GLU_TESS_EDGE_FLAG_DATA,
GLU_TESS_VERTEX, GLU_TESS_VERTEX_DATA, GLU_TESS_END,
GLU_TESS_END_DATA, GLU_TESS_COMBINE, GLU_TESS_COMBINE_DATA,
GLU_TESS ERROR, and GLU_TESS ERROR_DATA. The twelve possible callback function
have the following prototypes:
GLU_TESS_BEGIN voioegin(GLenuntypé;
GLU_TESS_BEGIN_DATA vdigin(GLenuntype
void *user_daty;
GLU_TESS EDGE_FLAG vogtigeFlagGLboolearflag);
GLU_TESS_EDGE_FLAG_DATA vaidgeFlagGLbooleanflag,
void *user_daty;
GLU_TESS_VERTEX voigrtexXvoid *vertex_dat;
GLU_TESS_ VERTEX_DATA vaidrteXvoid *vertex_data
void *user_daty;
GLU_TESS_END voidndvoid);
GLU_TESS_END_DATA voehdvoid *user_daty;
GLU_TESS_ERROR voatror(GLenumerrno);
GLU_TESS ERROR_DATA vador(GLenumerrno, void *user_daty;
GLU_TESS_COMBINE vombmbinéGLdoublecoordg3],
void *vertex_dat§4],

GLfloat weighf4],

void **outData);

GLU_TESS_COMBINE_DATA vaidmbingGLdoublecoordg3],
void *vertex_dat§4],

GLfloat weighf4],

void **outData,

void *user_daty;

To change a callback routine, simply aliTessCallback(yvith the new routine. To eliminate a

callback routine without replacing it with a new one, ga$essCallback(@ null pointer for the
appropriate function.

As tessellation proceeds, the callback routines are called in a manner

similar to how you use the OpenGL commagtRegin() glEdgeFlag*() glVertex*(), andglEnd()
(See'Marking Polygon Boundary Edges" in Chaptefo? more information abowlEdgeFlag*())

The combine callback is used to create new vertices where edges intersect. The error callback is
invoked during the tessellation only if something goes wrong.

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 3

For every tessellator object created, a GLU_TESS BEGIN callback is invoked with one of four
possible parameters: GL_TRIANGLE_FAN, GL_TRIANGLE_STRIP, GL_TRIANGLES, and
GL_LINE_LOOP. When the tessellator decomposes the polygons, the tessellation algorithm will
decide which type of triangle primitive is most efficient to use. (If the
GLU_TESS_BOUNDARY_ONLY property is enabled, then GL_LINE_LOOP is used for
rendering.)

Since edge flags make no sense in a triangle fan or triangle strip, if there is a callback associated \
GLU_TESS_EDGE_FLAG that enables edge flags, the GLU_TESS_BEGIN callback is called only
with GL_TRIANGLES. The GLU_TESS_EDGE_FLAG callback works exactly analogously to the
OpenGLglEdgeFlag*()call.

After the GLU_TESS BEGIN callback routine is called and before the callback associated with
GLU_TESS_END is called, some combination of the GLU_TESS_EDGE_FLAG and

GLU_TESS_ VERTEX callbacks is invoked (usually by callglioTessVertex(which is described

on page 42h The associated edge flags and vertices are interpreted exactly as they are in OpenGl
betweenglBegin()and the matchinglEnd().

If something goes wrong, the error callback is passed a GLU error number. A character string
describing the error is obtained using the rougheErrorString() (See"Describing GLU Errorsfor
more information about this routine.)

Example 11-%hows a portion of tess.c, where a tessellation object is created and several callback:
are registered.

Example 11-1 Registering Tessellation Callbacks: tess.c

* a portion of init() */

tobj = gluNewTess();

gluTessCallback(tobj, GLU_TESS VERTEX,
(GLvoid (*) () &glVertex3dv);

gluTessCallback(tobj, GLU _TESS BEGIN,
(GLvoid (*) ()) &beginCallback);

gluTessCallback(tobj, GLU_TESS END,
(GLvoid (*) ()) &endCallback);

gluTessCallback(tobj, GLU_TESS ERROR,
(GLvoid (*) ()) &errorCallback);

[* the callback routines registered by gluTessCallback() */

void beginCallback(GLenum which)

{
glBegin(which);

}

void endCallback(void)

{
glEnd();

}

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics - 4

void errorCallback(GLenum errorCode)

{

const GLubyte *estring;

estring = gluErrorString(errorCode);
fprintf (stderr, "Tessellation Error: %s\n", estring);
exit (0);

}

In Example 11-%he registered GLU_TESS VERTEX callback is singlertex3dv() and only

the coordinates at each vertex are passed along. However, if you want to specify more informatior
every vertex, such as a color value, a surface normal vector, or texture coordinate, you'll have to
make a more complex callback routiBsample 11-8hows the start of another tessellated object,
further along in program tess.c. The registered funatestexCallback(expects to receive a

parameter that is a pointer to six double-length floating point valuesythendz coordinates and

the red, green, and blue color values, respectively, for that vertex.

Example 11-2 Vertex and Combine Callbacks: tess.c

[* a different portion of init() */
gluTessCallback(tobj, GLU_TESS VERTEX,
(GLvoid (*) ()) &vertexCallback);
gluTessCallback(tobj, GLU _TESS BEGIN,
(GLvoid (*) ()) &beginCallback);
gluTessCallback(tobj, GLU_TESS END,
(GLvoid (*) ()) &endCallback);
gluTessCallback(tobj, GLU_TESS ERROR,
(GLvoid (*) ()) &errorCallback);
gluTessCallback(tobj, GLU_TESS COMBINE,
(GLvoid (*) ()) &combineCallback);

/* new callback routines registered by these calls */
void vertexCallback(GLvoid *vertex)

{

const GLdouble *pointer;

pointer = (GLdouble *) vertex;
glColor3dv(pointer+3);
glVertex3dv(vertex);

}

void combineCallback(GLdouble coords[3],
GLdouble *vertex_data[4],
GLfloat weight[4], GLdouble **dataOut)
{
GLdouble *vertex;
inti;

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 5

vertex = (GLdouble *) malloc(6 * sizeof(GLdouble));
vertex[0] = coords[0];
vertex[1] = coords[1];
vertex[2] = coords[2];
for(i=3;i<7;i++)
vertex[i] = weight[0] * vertex_data[0][i]
+ weight[1] * vertex_data[1][i]
+ weight[2] * vertex_data[2][i]
+ weight[3] * vertex_data[3][i];
*dataOut = vertex;

}

Example 11-3lso shows the use of the GLU_TESS_COMBINE callback. Whenever the tessellatio
algorithm examines the input contours, detects an intersection, and decides it must create a new
vertex, the GLU_TESS_COMBINE callback is invoked. The callback is also called when the
tessellator decides to merge features of two vertices that are very close to one another. The newly
created vertex is a linear combination of up to four existing vertices, referenceddoy datf0..3]

in Example 11-2The coefficients of the linear combination are givemvbigh{0..3]; these weights

sum to 1.0coordsgives the location of the new vertex.

The registered callback routine must allocate memory for another vertex, perform a weighted
interpolation of data usingertex_datandweight and return the new vertex pointerdasaOut
combineCallback()n Example 11-hterpolates the RGB color value. The function allocates a
six—element array, puts tkey, andz coordinates in the first three elements, and then puts the
weighted average of the RGB color values in the last three elements.

User—-Specified Data

Six kinds of callbacks can be registered. Since there are two versions of each kind of callback, the
are twelve callbacks in all. For each kind of callback, there is one with user—specified data and one
without. The user—specified data is given by the applicatigluT@ssBeginPolygon@nd is then

passed, unaltered, to each *DATA callback routine. With GLU_TESS BEGIN_DATA, the
user—specified data may be used for "per—polygon" data. If you specify both versions of a particule
callback, the callback withser_datais used, and the other is ignored. So, although there are twelve
callbacks, you can have a maximum of six callback functions active at any time.

For instanceExample 11-Rses smooth shading, wertexCallback(specifies an RGB color for

every vertex. If you want to do lighting and smooth shading, the callback would specify a surface
normal for every vertex. However, if you want lighting and flat shading, you might specify only one
surface normal for every polygon, not for every vertex. In that case, you might choose to use the
GLU_TESS BEGIN_DATA callback and pass the vertex coordinates and surface normal in the
user_datgpointer.

Tessellation Properties

Prior to tessellation and rendering, you may gisd essPropertyfo set several properties to affect
the tessellation algorithm. The most important and complicated of these properties is the winding
rule, which determines what is considered "interior" and "exterior."

void gluTessProperfGLUtesselator tessohjGLenunproperty,

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 6

GLdoublevalug;
For the tessellation objet¢ssobj the current value gfropertyis set tovalue propertyis one of
GLU_TESS_BOUNDARY_ONLY, GLU_TESS_TOLERANCE, or
GLU_TESS_WINDING_RULE.
If propertyis GLU_TESS_BOUNDARY_ONLW¥Jueis either GL_TRUE or GL_FALSE. When
set to GL_TRUE, polygons are no longer tessellated into filled polygons; line loops are drawn 1
outline the contours that separate the polygon interior and exterior. The default value is
GL_FALSE. (SegluTessNormal(Jo see how to control the winding direction of the contours.)
If propertyis GLU_TESS_TOLERANCHalueis a distance used to calculate whether two
vertices are close together enough to be merged by the GLU_TESS_COMBINE callback. The
tolerance value is multiplied by the largest coordinate magnitude of an input vertex to determir
the maximum distance any feature can move as a result of a single merge operation. Feature
merging may not be supported by your implementation, and the tolerance value is only a hint.
The default tolerance value is zero.
The GLU_TESS_WINDING_RUIgeoperty determines which parts of the polygon are on the
interior and which are the exterior and should not be filleadue can be one of
GLU_TESS_WINDING_ODD (the default), GLU_TESS_WINDING_NONZERO,
GLU_TESS_WINDING_POSITIVE, GLU_TESS_WINDING_NEGATIVE, or
GLU_TESS_WINDING_ABS_GEQ_TWO.

Winding Numbers and Winding Rules

For a single contour, the winding number of a point is the signed number of revolutions we make
around that point while traveling once around the contour (where a counterclockwise revolution is
positive and a clockwise revolution is negative). When there are several contours, the individual
winding numbers are summed. This procedure associates a signed integer value with each point il
plane. Note that the winding number is the same for all points in a single region.

Figure 11-2hows three sets of contours and winding numbers for points inside those contours. In
left set, all three contours are counterclockwise, so each nested interior region adds one to the
winding number. For the middle set, the two interior contours are drawn clockwise, so the winding
number decreases and actually becomes negative.

vév
2\

Figure 11-2 Winding Numbers for Sample Contours

The winding rule classifies a regioniasideif its winding number belongs to the chosen category
(odd, nonzero, positive, negative, or "absolute value of greater than or equal to two"). The odd anc
nonzero rules are common ways to define the interior. The positive, negative, and "absolute
value>=2" winding rules have some limited use for polygon CSG (computational solid geometry)

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 7

operations.

The program tesswind.c demonstrates the effects of winding rules. The four sets of contours show
Figure 11-are rendered. The user can then cycle through the different winding rule properties to s
their effects. For each winding rule, the dark areas represent interiors. Note the effect of clockwise
and counterclockwise winding.

& S F 5 -] = A
— 1
COMTOURS +
AND | Taf B
WINDING 13 |“1 21\3}{ T 1|2|a[d]]
¥ 1 . ¥ 1 o T IIL IIl - | I
L 4 .
WINDING \ "
HULES
- E IE. E
o E * l
o D * l
MEGATIVE uniilled . unfilled unfilled

ABS_GEQUTWO undilled + l

Figure 11-3 How Winding Rules Define Interiors

CSG Uses for Winding Rules

GLU_TESS WINDING_ODD and GLU_TESS_ WINDING_NONZERO are the most commonly
used winding rules. They work for the most typical cases of shading.

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 8

The winding rules are also designed for computational solid geometry (CSG) operations. Thy maki
easy to find the union, difference, or intersection (Boolean operations) of several contours.

First, assume that each contour is defined so that the winding number is zero for each exterior reg
and one for each interior region. (Each contour must not intersect itself.) Under this model,
counterclockwise contours define the outer boundary of the polygon, and clockwise contours defin
holes. Contours may be nested, but a nested contour must be oriented oppositely from the contou
that contains it.

If the original polygons do not satisfy this description, they can be converted to this form by first
running the tessellator with the GLU_TESS_BOUNDARY_ONLY property turned on. This returns i
list of contours satisfying the restriction just described. By creating two tessellator objects, the
callbacks from one tessellator can be fed directly as input to the other.

Given two or more polygons of the preceding form, CSG operations can be implemented as follow

UNIONL To calculate the union of several contours, draw all input contours as a single
polygon. The winding number of each resulting region is the number of original polygons that
cover it. The union can be extracted by using the GLU_TESS_WINDING_NONZERO or
GLU_TESS_WINDING_POSITIVE winding rules. Note that with the nonzero winding rule, we
would get the same result if all contour orientations were reversed.

INTERSECTIONI This only works for two contours at a time. Draw a single polygon using
two contours. Extract the result using GLU_TESS WINDING_ABS _GEQ_TWO.

DIFFERENCHI Suppose you want to compute A diff (B union C union D). Draw a single
polygon consisting of the unmodified contours from A, followed by the contours of B, C, and D
with their vertex order reversed. To extract the result, use the
GLU_TESS_WINDING_POSITIVE winding rule. (If B, C, and D are the result of a
GLU_TESS_BOUNDARY_ONLY operation, an alternative to reversing the vertex order is to
usegluTessNormal(jo reverse the sign of the supplied normal.

Other Tessellation Property Routines

There are complementary routines, which work alonggisi®essProperty()gluGetTessProperty()

retrieves the current values of tessellator properties. If the tessellator is being used to generate wir

frame outlines instead of filled polygoriguTessNormal(an be used to determine the winding

direction of the tessellated polygons.

void gluGetTessProperféLUtesselator tessobj GLenunproperty

GLdouble *walug);
For the tessellation objet¢ssobj the current value gfropertyis returned towvalue Values for
propertyandvalueare the same as fgluTessProperty()

void gluTessNorm4GLUtesselator tessohjGLdoublex, GLdoubley,

GLdouble?);
For the tessellation objet¢ssobjgluTessNormal(lefines a normal vector, which controls the
winding direction of generated polygons. Before tessellation, all input data is projected into a
plane perpendicular to the normal. Then, all output triangles are oriented counterclockwise,
with respect to the normal. (Clockwise orientation can be obtained by reversing the sign of the
supplied normal.) The default normal is (0, 0, 0).

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 9

If you have some knowledge about the location and orientation of the input data, then using
gluTessNormal(tan increase the speed of the tessellation. For example, if you know that all
polygons lie on the x-y plane, a@llhiTessNormdtessobj 0, 0, 1).

The default normal is (0, 0, 0), and its effect is not immediately obvious. In this case, it is expected
that the input data lies approximately in a plane, and a plane is fitted to the vertices, no matter how
they are truly connected. The sign of the normal is chosen so that the sum of the signed areas of ¢
input contours is nonnegative (where a counterclockwise contour has a positive area). Note that if
input data does not lie approximately in a plane, then projection perpendicular to the computed
normal may substantially change the geometry.

Polygon Definition

After all the tessellation properties have been set and the callback actions have been registered, it
finally time to describe the vertices that compromise input contours and tessellate the polygons.

void gluTessBeginPolygqiLUtesselator tessobj void *user_dat;
void gluTessEndPolygofGLUtesselator tessoby;

Begins and ends the specification of a polygon to be tessellated and associates a tessellation
object,tessobj with it. user_datgpoints to a user—defined data structure, which is passed along
all the GLU_TESS * DATA callback functions that have been bound.

Calls togluTessBeginPolygongndgluTessEndPolygongurround the definition of one or more
contours. WhemgluTessEndPolygon{3 called, the tessellation algorithm is implemented, and the
tessellated polygons are generated and rendered. The callback functions and tessellation propertit
that were bound and set to the tessellation object ghirfg@ssCallback@ndgluTessProperty(are

used.

void gluTessBeginContoy6GLUtesselator tessoby;
void gluTessEndContoyGLUtesselator tessobyj;

Begins and ends the specification of a closed contour, which is a portion of a polygon. A close
contour consists of zero or more callggloTessVertex(which defines the vertices. The last
vertex of each contour is automatically linked to the first.

In practice, a minimum of three vertices is needed for a meaningful contour.

void gluTessVertegGLUtesselator tessohjGLdoublecoord$3],
void *vertex_dat

Specifies a vertex in the current contour for the tessellation obpemids contains the
three—dimensional vertex coordinates, aadex_datds a pointer that's sent to the callback
associated with GLU_TESS_VERTEX or GLU_TESS_VERTEX_DATA. Typmdd#ly, data
contains vertex coordinates, surface normals, texture coordinates, color information, or
whatever else the application may find useful.

In the program tess.c, a portion of which is showBxample 11-3wo polygons are defined. One
polygon is a rectangular contour with a triangular hole inside, and the other is a smooth—shaded,
self-intersecting, five—pointed star. For efficiency, both polygons are stored in display lists. The firs
polygon consists of two contours; the outer one is wound counterclockwise, and the "hole" is wour
clockwise. For the second polygon, 8tararray contains both the coordinate and color data, and its
tessellation callbackiertexCallback()uses both.

It is important that each vertex is in a different memory location because the vertex data is not cop
by gluTessVertex{pnly the pointerertex_datais saved. A program that reuses the same memory

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 10

for several vertices may not get the desired result.

Note: In gluTessVertex()jt may seem redundant to specify the vertex coordinate data twice, for botl
the coordsandvertex_datgparameters; however, both are necessayrdsrefers only to the vertex
coordinatesvertex_datauses the coordinate data, but may also use other information for each verte

Example 11-3 Polygon Definition: tess.c

GLdouble rect[4][3] = {50.0, 50.0, 0.0,
200.0, 50.0, 0.0,
200.0, 200.0, 0.0,
50.0, 200.0, 0.0};

GLdouble tri[3][3] = {75.0, 75.0, 0.0,
125.0, 175.0, 0.0,
175.0, 75.0, 0.0}

GLdouble star[5][6] = {250.0, 50.0, 0.0, 1.0, 0.0, 1.0,
325.0, 200.0, 0.0, 1.0, 1.0, 0.0,
400.0, 50.0, 0.0, 0.0, 1.0, 1.0,
250.0, 150.0, 0.0, 1.0, 0.0, 0.0,
400.0, 150.0, 0.0, 0.0, 1.0, 0.0};

startList = glGenLists(2);

tobj = gluNewTess();

gluTessCallback(tobj, GLU_TESS_VERTEX,
(GLvoid (*) () &glVertex3dv);

gluTessCallback(tobj, GLU_TESS_BEGIN,
(GLvoid (*) ()) &beginCallback);

gluTessCallback(tobj, GLU_TESS_END,
(GLvoid (*) ()) &endCallback);

gluTessCallback(tobj, GLU_TESS_ERROR,
(GLvoid (*) ()) &errorCallback);

gINewlList(startList, GL_COMPILE);
glShadeModel(GL_FLAT);
gluTessBeginPolygon(tobj, NULL);
gluTessBeginContour(tobj);
gluTessVertex(tobj, rect[0], rect[0]);
gluTessVertex(tobj, rect[1], rect[1]);
gluTessVertex(tobj, rect[2], rect[2]);
gluTessVertex(tobj, rect[3], rect[3]);
gluTessEndContour(tobj);
gluTessBeginContour(tobj);
gluTessVertex(tobj, tri[0], tri[0]);
gluTessVertex(tobj, tri[1], tri[1]);
gluTessVertex(tobj, tri[2], tri[2]);
gluTessEndContour(tobj);
gluTessEndPolygon(tobj);
glEndList();

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 11

gluTessCallback(tobj, GLU_TESS_VERTEX,
(GLvoid (*) ()) &vertexCallback);
gluTessCallback(tobj, GLU_TESS_BEGIN,
(GLvoid (*) ()) &beginCallback);
gluTessCallback(tobj, GLU_TESS_END,
(GLvoid (*) ()) &endCallback);
gluTessCallback(tobj, GLU_TESS_ERROR,
(GLvoid (*) ()) &errorCallback);
gluTessCallback(tobj, GLU_TESS_COMBINE,
(GLvoid (*) ()) &combineCallback);

gINewlList(startList + 1, GL_COMPILE);
glShadeModel(GL_SMOQOTH);
gluTessProperty(tobj, GLU_TESS_ WINDING_RULE,
GLU_TESS_WINDING_POSITIVE);
gluTessBeginPolygon(tobj, NULL);
gluTessBeginContour(tobj);
gluTessVertex(tobj, star[0], star[0]);
gluTessVertex(tobj, star[1], star[1]);
gluTessVertex(tobj, star[2], star[2]);
gluTessVertex(tobj, star[3], star[3]);
gluTessVertex(tobj, star[4], star[4]);
gluTessEndContour(tobj);
gluTessEndPolygon(tobj);
glEndList();

Deleting a Tessellator Object

If you no longer need a tessellation object, you can delete it and free all associated memory with
gluDeleteTess()

void gluDelete Teg& L Utesselator tessoby);
Deletes the specified tessellation objéessobj and frees all associated memory.
Tessellator Performance Tips

For best performance, remember these rules.

1. Cache the output of the tessellator in a display list or other user structure. To obtain the
post-tessellation vertex coordinates, tessellate the polygons while in feedback mode. (See
"Feedback" in Chapter 13

2. UsegluTessNormal(jo supply the polygon normal.

3. Use the same tessellator object to render many polygons rather than allocate a new tessellato
each one. (In a multithreaded, multiprocessor environment, you may get better performance
using several tessellators.)

Describing GLU Errors

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 12

The GLU provides a routine for obtaining a descriptive string for an error code. This routine is not
limited to tessellation but is also used for NURBS and quadrics errors, as well as errors in the base
GL. (See"Error Handling" in Chapter 1#br information about OpenGL's error handling facility.)

Backward Compatibility

If you are using the 1.0 or 1.1 version of GLU, you have a much less powerful tessellator available
The 1.0/1.1 tessellator handles only simple nonconvex polygons or simple polygons containing hol
It does not properly tessellate intersecting contours (no COMBINE callback), nor process
per—polygon data.

The 1.0/1.1 tessellator has some similarities to the current tessgjlaidewTess(and
gluDeleteTess@re used for both tessellators. The main vertex specification routine remains
gluTessVertex()The callback mechanism is controlleddiyTessCallback(although there are only
five callback functions that can be registered, a subset of the current twelve.

Here are the prototypes for the 1.0/1.1 tessellator. The 1.0/1.1 tessellator still works in GLU 1.2, bt
its use is no longer recommended.

void gluBeginPolygo(GLUtriangulatorObj *tessobj;
void gluNextContoyGLUtriangulatorObj *tessobj GLenuntype);
void gluEndPolygotGLUtriangulatorObj *tessob

The outermost contour must be specified first, and it does not require an initial call to
gluNextContour()For polygons without holes, only one contour is defined, and
gluNextContour(js not used. If a polygon has multiple contours (that is, holes or holes within
holes), the contours are specified one after the other, each precedkiNexxtContour()
gluTessVertex(p called for each vertex of a contour.

For gluNextContour()type can be GLU_EXTERIOR, GLU_INTERIOR, GLU_CCW, GLU_CW,
or GLU_UNKNOWN. These serve only as hints to the tessellation. If you get them right, the
tessellation might go faster. If you get them wrong, they're ignored, and the tessellation still
works. For polygons with holes, one contour is the exterior contour and the other’s interior. Thi
first contour is assumed to be of type GLU_EXTERIOR. Choosing clockwise and
counterclockwise orientation is arbitrary in three dimensions; however, there are two different
orientations in any plane, and the GLU_CCW and GLU_CW types should be used consistently
Use GLU_UNKNOWN if you don’t have a clue.

It is highly recommended that you convert GLU 1.0/1.1 code to the new tessellation interface for
GLU 1.2 by following these steps.

1. Change references to the major data structure type from GLUtriangulatorObj to GLUtesselator
In GLU 1.2, GLUtriangulatorObj and GLUtesselator are defined to be the same type.

2. ConvertgluBeginPolygon(jo two commandggluTessBeginPolygongnd
gluTessBeginContour(All contours must be explicitly started, including the first one.

3. ConvertgluNextContour(}o bothgluTessEndContour@ndgluTessBeginContour()¥ou have
to end the previous contour before starting the next one.

4. ConvertgluEndPolygon(to bothgluTessEndContourgndgluTessEndPolygon(The final
contour must be closed.

5. Change references to constantgltoressCallback()n GLU 1.2, GLU_BEGIN,
GLU_VERTEX, GLU_END, GLU_ERROR, and GLU_EDGE_FLAG are defined as synonyms

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 13

for GLU_TESS_BEGIN, GLU_TESS_VERTEX, GLU_TESS_END, GLU_TESS_ERROR, and
GLU_TESS_EDGE_FLAG.

Quadrics: Rendering Spheres, Cylinders, and Disks

The base OpenGL library only provides support for modeling and rendering simple points, lines, ar
convex filled polygons. Neither 3D objects, nor commonly used 2D objects such as circles, are
directly available.

Throughout this book, you've been using GLUT to create some 3D objects. The GLU also provide:
routines to model and render tessellated, polygonal approximations for a variety of 2D and 3D sha
(spheres, cylinders, disks, and parts of disks), which can be calculated with quadric equations. Thi
includes routines to draw the quadric surfaces in a variety of styles and orientations. Quadric surfa
are defined by the following general quadratic equation:

a1x? + apy2 + agz2 + agxy + agyx + apXz + ayx + agy + agz + a,0= 0

(See David Roger®rocedural Elements for Computer Graphibiew York, NY: McGraw-Hill
Book Company, 1985Creating and rendering a quadric surface is similar to using the tessellator. T
use a quadrics object, follow these steps.

1. To create a quadrics object, iglaNewQuadric()

2. Specify the rendering attributes for the quadrics object (unless you're satisfied with the default
values).

1. UsegluQuadricOrientation(to control the winding direction and differentiate the interior
from the exterior.

2. UsegluQuadricDrawStyle(Jo choose between rendering the object as points, lines, or filled
polygons.

3. For lit quadrics objects, ugguQuadricNormals(}o specify one normal per vertex or one
normal per face. The default is that no normals are generated at all.

4. For textured quadrics objects, ugaQuadricTexture(jf you want to generate texture
coordinates.

3. Prepare for problems by registering an error—handling routinghiffuadricCallback() Then,
if an error occurs during rendering, the routine you've specified is invoked.

4. Now invoke the rendering routine for the desired type of quadrics objeSphere()
gluCylinder() gluDisk(), or gluPartialDisk() For best performance for static data, encapsulate
the quadrics object in a display list.

5. When you're completely finished with it, destroy this object witliDeleteQuadric()If you
need to create another quadric, it's best to reuse your quadrics object.

Manage Quadrics Objects

A quadrics object consists of parameters, attributes, and callbacks that are stored in a data structu
type GLUquadricObj. A quadrics object may generate vertices, normals, texture coordinates, and
other data, all of which may be used immediately or stored in a display list for later use. The
following routines create, destroy, and report upon errors of a quadrics object.

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 14

GLUquadricObj* gluNewQuadrigvoid);
Creates a new quadrics object and returns a pointer to it. A null pointer is returned if the routin
fails.

void gluDeleteQuadri¢dGLUquadricObj fobj);
Destroys the quadrics objegbbj and frees up any memory used by it.

void gluQuadricCallbac GLUquadricObj fiobj, GLenumwhich void (*fn)());
Defines a functiofin to be called in special circumstances. GLU_ERROR is the only legal value
for which, sofn is called when an error occurs.fti is NULL, any existing callback is erased.

For GLU_ERROR(fn is called with one parameter, which is the error cglig=rrorString() can be
used to convert the error code into an ASCII string.

Control Quadrics Attributes

The following routines affect the kinds of data generated by the quadrics routines. Use these routir
before you actually specify the primitives.

Example 11-4juadric.c, orpage 435demonstrates changing the drawing style and the kind of
normals generated as well as creating quadrics objects, error handling, and drawing the primitives

void gluQuadricDrawStyldGLUquadricObj tobj, GLenundrawStyle;
For the quadrics objeatobj drawStylecontrols the rendering style. Legal values doawStyle
are GLU_POINT, GLU_LINE, GLU_SILHOUETTE, and GLU_FILL.

GLU_POINT and GLU_LINE specify that primitives should be rendered as a point at every vertex
a line between each pair of connected vertices.

GLU_SILHOUETTE specifies that primitives are rendered as lines, except that edges separating
coplanar faces are not drawn. This is most often usegluDisk() andgluPartialDisk()

GLU_FILL specifies rendering by filled polygons, where the polygons are drawn in a
counterclockwise fashion with respect to their normals. This may be affected by
gluQuadricOrientation()

void gluQuadricOrientation(GLUquadricObj tobj, GLenunworientatior);
For the quadrics objeatobj orientationis either GLU_OUTSIDE (the default) or
GLU_INSIDE, which controls the direction in which normals are pointing.

ForgluSphere(andgluCylinder() the definitions of outside and inside are obvious.dgtabDisk()
andgluPartialDisk(), the positivez side of the disk is considered to be outside.

void gluQuadricNormalgGLUquadricObj gobj, GLenurmormalg;
For the quadrics objedjjobj normalsis one of GLU_NONE (the default), GLU_FLAT, or
GLU_SMOOTH.

gluQuadricNormals(Js used to specify when to generate normal vectors. GLU_NONE means that
no normals are generated and is intended for use without lighting. GLU_FLAT generates one norn
for each facet, which is often best for lighting with flat shading. GLU_SMOOTH generates one
normal for every vertex of the quadric, which is usually best for lighting with smooth shading.
void gluQuadricTexturéGLUquadricObj *gobj,
GLbooleantextureCoordgs

For the quadrics objeajobj textureCoordds either GL_FALSE (the default) or GL_TRUE. If

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 15

the value ofextureCoordss GL_TRUE, then texture coordinates are generated for the quadrics
object. The manner in which the texture coordinates are generated varies, depending upon the
type of quadrics object rendered.

Quadrics Primitives

The following routines actually generate the vertices and other data that constitute a quadrics obje
In each casejobj refers to a quadrics object createdghyNewQuadric()

void gluSpherdGLUquadricObj "gobj GLdoubleradius,
GLint slices GLint stacks;

Draws a sphere of the giveadius, centered around the origin, (0, 0, 0). The sphere is
subdivided around theaxis into a number dflices(similar to longitude) and along theaxis
into a number oftackg(latitude).

If texture coordinates are also generated by the quadrics facility,dherdinate ranges from
0.0 atz = —radius to 1.0 at = radius, witht increasing linearly along longitudinal lines.
Meanwhile s ranges from 0.0 at theytaxis, to 0.25 at the ¥axis, to 0.5 at they-axis, to 0.75
at the x axis, and back to 1.0 at the/ -axis.

void gluCylinder (GLUquadricObj fobj, GLdoublebaseRadius
GLdoubletopRadiusGLdoubleheight
GLint slices GLint stack$;

Draws a cylinder oriented along tteaxis, with the base of the cylinderzat 0 and the top at

= height. Like a sphere, the cylinder is subdivided around thés into a humber aflicesand
along thez axis into a number aftacksbaseRadiuss the radius of the cylinder at= 0.
topRadiusis the radius of the cylinder at= height. IftopRadiuds set to zero, then a cone is
generated.

If texture coordinates are generated by the quadrics facility, thendberdinate ranges

linearly from 0.0 az = 0 to 1.0 atz = height Thes texture coordinates are generated the same
way as they are for a sphere.

Note: The cylinder is not closed at the top or bottom. The disks at the base and at the top are not
drawn.

void gluDisk (GLUquadricObj fobj, GLdoubleinnerRadius
GLdoubleouterRadiusGLint slices GLintrings);

Draws a disk on the= 0 plane, with a radius afuterRadiusand a concentric circular hole

with a radius ofinnerRadiuslf innerRadiuss 0, then no hole is created. The disk is subdivided

around thez axis into a number daflices(like slices of pizza) and also about thaxis into a

number of concentridngs.

With respect to orientation, thezside of the disk is considered to be "outside"; that is, any

normals generated point along the axis. Otherwise, the normals point along thexis.

If texture coordinates are generated by the quadrics facility, then the texture coordinates are

generated linearly such that where &sterRadiusthe values fos andt at (R, 0, 0) is (1, 0.5),

at (0, R, 0) they are (0.5, 1), at (-R, 0, 0) they are (0, 0.5), and at (0, —R, 0) they are (0.5, 0).
void gluPartialDisk (GLUquadricObj *gobj GLdoubleinnerRadius

GLdoubleouterRadiusGLintslices GLintrings,
GLdoublestartAngle GLdoublesweepAnghe

Draws a partial disk on the= 0 plane. A partial disk is similar to a complete disk, in terms of
outerRadiusinnerRadiusslices andrings The difference is that only a portion of a partial disk
is drawn, starting fronstartAnglethroughstartAngler sweepAngléwherestartAngleand

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 16

sweepAnglare measured in degrees, where 0 degrees is alongythris; 90 degrees along the
+x axis, 180 along they-axis, and 270 along the axis).
A partial disk handles orientation and texture coordinates in the same way as a complete disk.

Note: For all quadrics objects, it's better to use tRadius height and similar arguments to scale
them rather than thgiScale*()command so that the unit-length normals that are generated don't
have to be renormalized. Set tirggs andstacksarguments to values other than one to force lighting
calculations at a finer granularity, especially if the material specularity is high.

Example 11-8hows each of the quadrics primitives being drawn, as well as the effects of different
drawing styles.

Example 11-4 Quadrics Objects: quadric.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdio.h>
#include <stdlib.h>

GLuint startList;

void errorCallback(GLenum errorCode)

{

const GLubyte *estring;

estring = gluErrorString(errorCode);
fprintf(stderr, "Quadric Error: %s\n", estring);
exit(0);

}

void init(void)

{
GLUquadricObj *qobj;
GLfloat mat_ambient[]] ={ 0.5, 0.5, 0.5, 1.0 };
GLfloat mat_specular[] ={ 1.0, 1.0, 1.0, 1.0 };
GLfloat mat_shininess[] = { 50.0 };
GLfloat light_position[] ={ 1.0, 1.0, 1.0, 0.0 };
GLfloat model_ambient[]] ={ 0.5, 0.5, 0.5, 1.0 };

glClearColor(0.0, 0.0, 0.0, 0.0);

glMaterialfv(GL_FRONT, GL_AMBIENT, mat_ambient);
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
glLightfv(GL_LIGHTO, GL_POSITION, light_position);
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, model_ambient);

glEnable(GL_LIGHTING);

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 17

glEnable(GL_LIGHTO);
glEnable(GL_DEPTH_TEST);

[* Create 4 display lists, each with a different quadric object.
* Different drawing styles and surface normal specifications
* are demonstrated.

*/
startList = glGenLists(4);
gobj = gluNewQuadric();
gluQuadricCallback(qobj, GLU_ERROR, errorCallback);

gluQuadricDrawStyle(qobj, GLU_FILL); /* smooth shaded */
gluQuadricNormals(qobj, GLU_SMOOTH);
gINewList(startList, GL_COMPILE);

gluSphere(gobj, 0.75, 15, 10);
glEndList();

gluQuadricDrawStyle(qobj, GLU_FILL); /* flat shaded */

gluQuadricNormals(qobj, GLU_FLAT);

gINewList(startList+1, GL_COMPILE);
gluCylinder(qobj, 0.5, 0.3, 1.0, 15, 5);

glEndList();

gluQuadricDrawStyle(qobj, GLU_LINE); /* wireframe */
gluQuadricNormals(qobj, GLU_NONE);
gINewList(startList+2, GL_COMPILE);

gluDisk(qobj, 0.25, 1.0, 20, 4);
glEndList();

gluQuadricDrawStyle(qobj, GLU_SILHOUETTE);
gluQuadricNormals(qobj, GLU_NONE);
gINewlList(startList+3, GL_COMPILE);

gluPartialDisk(qobj, 0.0, 1.0, 20, 4, 0.0, 225.0);
glEndList();

void display(void)

{
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glPushMatrix();

glEnable(GL_LIGHTING);
glShadeModel (GL_SMOOTH);
glTranslatef(-1.0, —-1.0, 0.0);
glCallList(startList);

glShadeModel (GL_FLAT);

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 18

glTranslatef(0.0, 2.0, 0.0);
glPushMatrix();
glRotatef(300.0, 1.0, 0.0, 0.0);
glCallList(startList+1);
glPopMatrix();

glDisable(GL_LIGHTING);
glColor3f(0.0, 1.0, 1.0);
glTranslatef(2.0, —2.0, 0.0);
glCallList(startList+2);

glColor3f(1.0, 1.0, 0.0);
glTranslatef(0.0, 2.0, 0.0);
glCallList(startList+3);

glPopMatrix();
glFlush();

void reshape (int w, int h)
{
glViewport(0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode(GL_PROJECTION);
glLoadldentity();
if (W <= h)
glOrtho(-2.5, 2.5, —2.5*(GLfloat)h/(GLfloat)w,
2.5%(GLfloat)h/(GLfloat)w, —10.0, 10.0);
else
glOrtho(—2.5*(GLfloat)w/(GLfloat)h,
2.5*(GLfloat)w/(GLfloat)h, 2.5, 2.5, -10.0, 10.0);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();

}

void keyboard(unsigned char key, int x, int y)

{
switch (key) {
case 27:
exit(0);
break;

int main(int argc, char** argv)

{
glutlnit(&argc, argv);

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 19

glutinitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
glutlnitWindowSize (500, 500);

glutinitWindowPosition(100, 100);

glutCreateWindow(argv[0]);

init();

glutDisplayFunc(display);

glutReshapeFunc(reshape);

glutkeyboardFunc(keyboard);

glutMainLoop();

return O;

OpenGL Programming Guide — Chapter 11, Tessellators and Quadrics — 20

