Chapter 8
Drawing Pixels, Bitmaps, Fonts, and Images

Bitmaps and Fonts

The Current Raster Position

Drawing the Bitmap

Choosing a Color for the Bitmap

Fonts and Display Lists

Defining and Using a Complete Font
Images

Reading, Writing, and Copying Pixel Data
Imaging Pipeline

Pixel Packing and Unpacking

Controlling Pixel-Storage Modes

Pixel-Transfer Operations

Pixel Mapping

Magnifying, Reducing, or Flipping an Image
Reading and Drawing Pixel Rectangles

The Pixel Rectangle Drawing Process
Tips for Improving Pixel Drawing Rates

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images - 1

Chapter 8
Drawing Pixels, Bitmaps, Fonts, and Images

Chapter Objectives
After reading this chapter, you'll be able to do the following:
Position and draw bitmapped data

Read pixel data (bitmaps and images) from the framebuffer into processor memory and from
memory into the framebuffer

Copy pixel data from one color buffer to another, or to another location in the same buffer
Magnify or reduce an image as it's written to the framebuffer

Control pixel-data formatting and perform other transformations as the data is moved to and
from the framebuffer

So far, most of the discussion in this guide has concerned the rendering of geoméirjmodtets
lines, and polygons. Two other important classes of data that can be rendered by OpenGL are

Bitmaps, typically used for characters in fonts

Image data, which might have been scanned in or calculated

Both bitmaps and image data take the form of rectangular arrays of pixels. One difference betweel
them is that ditmap consists of a single bit of information about each pixel, and image data
typically includes several pieces of data per pixel (the complete red, green, blue, and alpha color
components, for example). Also, bitmaps are like masks in that they’re used to overlay another
image, but image data simply overwrites or is blended with whatever data is in the framebuffer.

This chapter describes how to draw pixel data (bitmaps and images) from processor memory to th:
framebuffer and how to read pixel data from the framebuffer into processor memory. It also descrit
how to copy pixel data from one position to another, either from one buffer to another or within a
single buffer. This chapter contains the following major sections:

"Bitmaps and Fontstlescribes the commands for positioning and drawing bitmapped data. Suc
data may describe a font.

"Images"presents the basic information about drawing, reading and copying pixel data.

"Imaging Pipeline"describes the operations that are performed on images and bitmaps when
they are read from the framebuffer and when they are written to the framebuffer.

"Reading and Drawing Pixel Rectanglesiers all the details of how pixel data is stored in
memory and how to transform it as it's moved into or out of memory.

"Tips for Improving Pixel Drawing Ratedists tips for getting better performance when drawing
pixel rectangles.

In most cases, the necessary pixel operations are simple, so the first three sections might be all yc

need to read for your application. However, pixel manipulation can be cdiiiere are many
ways to store pixel data in memory, and you can apply any of several transformations to pixels as

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images - 1

they’re moved to and from the framebuffer. These details are the subject of the fourth section of th
chapter. Most likely, you'll want to read this section only when you actually need to make use of th
information. The last section provides useful tips to get the best performance when rendering bitmi
and images.

Bitmaps and Fonts

A bitmap is a rectangular array of 0s and 1s that serves as a drawing mask for a corresponding
rectangular portion of the window. Suppose you're drawing a bitmap and that the current raster co
is red. Wherever there’s a 1 in the bitmap, the corresponding pixel is replaced by a red pixel (or
combined with a red pixel, depending on which per—-fragment operations are in effétieéHag

and Operating on Fragments" in Chapte) Hicthere’s a 0 in the bitmap, the contents of the pixel are
unaffected. The most common use of bitmaps is for drawing characters on the screen.

OpenGL provides only the lowest level of support for drawing strings of characters and manipulatir
fonts. The commandgiRasterPos*(JandgIBitmap()position and draw a single bitmap on the screen.
In addition, through the display-list mechanism, you can use a sequence of character codes to ind
into a corresponding series of bitmaps representing those characteGhépesr for more

information about display lists.) You'll have to write your own routines to provide any other support
you need for manipulating bitmaps, fonts, and strings of characters.

ConsiderExample 8-Iwhich draws the character F three times on the scrégure 8-khows the F
as a bitmap and its corresponding bitmap data.

OxEf, Oxc
DaEE, Qach
Do, Q00
D020, 0200
Qe Q200
O EE, 0200
OxEE, 000
Qe Q200
Do, Q00
D020, 0200
Qe Q200
Do, Q00

Figure 8-1 Bitmapped F and Its Data

Example 8-1 Drawing a Bitmapped Character: drawf.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>

GLubyte rasters[24] = {
0xc0, 0x00, 0xc0, 0x00, 0xc0, 0x00, Oxc0, 0x00, 0xc0, 0x00,

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images - 2

Oxff, 0x00, 0xff, 0x00, 0xc0, 0x00, 0xc0, 0x00, 0xc0, 0x00,
Oxff, OxcO, Oxff, Oxc0};

void init(void)

{
glPixelStorei (GL_UNPACK_ALIGNMENT, 1);
glClearColor (0.0, 0.0, 0.0, 0.0);

}

void display(void)

{
glClear(GL_COLOR_BUFFER_BIT);
glColor3f (1.0, 1.0, 1.0);
glRasterPos2i (20, 20);
glBitmap (10, 12, 0.0, 0.0, 11.0, 0.0, rasters);
glBitmap (10, 12, 0.0, 0.0, 11.0, 0.0, rasters);
glBitmap (10, 12, 0.0, 0.0, 11.0, 0.0, rasters);
glFlush();

void reshape(int w, int h)

{
glViewport(0, 0, (GLsizei) w, (GLsizei) h);
gIMatrixMode(GL_PROJECTION);
glLoadldentity();
glOrtho (0, w, 0, h, -1.0, 1.0);
glMatrixMode(GL_MODELVIEW);

void keyboard(unsigned char key, int x, int y)
{
switch (key) {
case 27:
exit(0);

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode(GLUT_SINGLE | GLUT_RGB);
glutinitWindowSize (100, 100);
glutinitWindowPosition(100, 100);
glutCreateWindow(argv[0]);
init();
glutReshapeFunc(reshape);
glutkeyboardFunc(keyboard);

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images - 3

glutDisplayFunc(display);
glutMainLoop();
return O;

}

In Figure 8- 1note that the visible part of the F character is at most 10 bits wide. Bitmap data is
always stored in chunks that are multiples of 8 bits, but the width of the actual bitmap doesn’t have
be a multiple of 8. The bits making up a bitmap are drawn starting from the lower-left corner: First,
the bottom row is drawn, then the next row above it, and so on. As you can tell from the code, the
bitmap is stored in memory in this orf@ethe array of rasters begins with 0xc0, 0x00, 0xc0, 0x00 for
the bottom two rows of the F and continues to 0xff, Oxc0, Oxff, OxcO for the top two rows.

The commands of interest in this examplegiRasterPos2i(andglBitmap() they're discussed in
detail in the next section. For now, ignore the cafjlRixelStorei() it describes how the bitmap data
is stored in computer memory. (S&ontrolling Pixel-Storage Mode&r more information.)

The Current Raster Position

Thecurrent raster position is the origin where the next bitmap (or image) is to be drawn. In the F
example, the raster position was set by calijiiRpsterPos*(Wwith coordinates (20, 20), which is
where the lower-left corner of the F was drawn:

glRasterPos2i(20, 20);

void glRasterPof34Hsifd}(TYPE x, TYPE y, TYPE z, TYPE w

void glRasterPof234Hsifd}v(TYPE *coord}
Sets the current raster position. They, z andw arguments specify the coordinates of the raster
position. If the vector form of the function is used,dberdsarray contains the coordinates of

the raster position. IfjIRasterPos2*(Js usedzis implicitly set to zero ang is implicitly set to
one; similarly, withglRasterPos3*()w is set to one.

The coordinates of the raster position are transformed to screen coordinates in exactly the same w
as coordinates supplied wittgh/ertex*() command (that is, with the modelview and perspective
matrices). After transformation, they either define a valid spot in the viewport, or they're clipped ou
because the coordinates were outside the viewing volume. If the transformed point is clipped out, 1
current raster position is invalid.

Note: If you want to specify the raster position in screen coordinates, you'll want to make sure
you've specified the modelview and projection matrices for simple 2D rendering, with something lik
this sequence of commands, whetdth andheightare also the size (in pixels) of the viewport:

gIMatrixMode(GL_PROJECTION);

glLoadldentity();

gluOrtho2D(0.0, (GLfloat) width, 0.0, (GLfloat) height);
glMatrixMode(GL_MODELVIEW);

glLoadldentity();

To obtain the current raster position, you can use the query congi@etloatv()with
GL_CURRENT_RASTER_POSITION as the first argument. The second argument should be a
pointer to an array that can hold they, z, vy values as floating—point numbers. Call
glGetBooleanv(Wwith GL_CURRENT_RASTER_POSITION_VALID as the first argument to
determine whether the current raster position is valid.

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images - 4

Drawing the Bitmap
Once you've set the desired raster position, you can uggBhmap()command to draw the data.

void gIBitmagGLsizeiwidth, GLsizeiheight GLfloat Xy,

GLfloat ypo, GLfloatxp;,

GLfloat ypj, const GLubyt&bitmap);
Draws the bitmap specified ljtmap which is a pointer to the bitmap image. The origin of the
bitmap is placed at the current raster position. If the current raster position is invalid, nothing is
drawn, and the raster position remains invalid. T¥idth andheightarguments indicate the
width and height, in pixels, of the bitmap. The width need not be a multiple of 8, although the
data is stored in unsigned characters of 8 bits each. (In the F example, it wouldn’t matter if the
were garbage bits in the data beyond the tenth bit; gii8gmap()was called with a width of
10, only 10 bits of the row are rendered.) Ugg andypg to define the origin of the bitmap
(positive values move the origin up and to the right of the raster position; negative values mov
it down and to the left)hj andyp; indicate thex andy increments that are added to the raster

position after the bitmap is rasterized ($égure 8-2

=10

h=12 (g Fpo) = (00 9)
(ki Vo) = (11, 0)

Figure 8-2 Bitmap and Its Associated Parameters

Allowing the origin of the bitmap to be placed arbitrarily makes it easy for characters to extend bel¢
the origin (typically used for characters with descenders, such as g, j, and y), or to extend beyond"
left of the origin (used for various swash characters, which have extended flourishes, or for charac
in fonts that lean to the left).

After the bitmap is drawn, the current raster position is advancag landyp; in thex- and

y—directions, respectively. (If you just want to advance the current raster position without drawing
anything, calgiBitmap()with thebitmapparameter set to NULL and with thddth andheightset to
zero.) For standard Latin fontg; is typically 0.0 andcpj is positive (since successive characters are

drawn from left to right). For Hebrew, where characters go from right to leftythelues would

typically be negative. Fonts that draw successive characters vertically in columns would use zero f
Xpi and nonzero values fgpj. In Figure 8—2each time the F is drawn, the current raster position

advances by 11 pixels, allowing a 1-pixel space between successive characters.

Sincexpa, Ybo Xbi, andypij are floating—point values, characters need not be an integral number of

pixels apart. Actual characters are drawn on exact pixel boundaries, but the current raster position
kept in floating point so that each character is drawn as close as possible to where it belongs. For

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images - 5

example, if the code in the F example was modified sagjas 11.5 instead of 12, and if more

characters were drawn, the space between letters would alternate between 1 and 2 pixels, giving t
best approximation to the requested 1.5—pixel space.

Note: You can't rotate bitmap fonts because the bitmap is always drawn alignedxtarttig
framebuffer axes.

Choosing a Color for the Bitmap

You are familiar with usinglColor*() andglindex*() to set the current color or index to draw
geometric primitives. The same commands are used to set different state variables,
GL_CURRENT_RASTER_COLOR and GL_CURRENT_RASTER_INDEX, for rendering bitmaps.
The raster color state variables are set wgiBasterPos*(Js called, which can lead to a trap. In the
following sequence of code, what is the color of the bitmap?

glColor3f(1.0, 1.0, 1.0); /* white */
glRasterPos3fv(position);
glColor3f(1.0, 0.0, 0.0); /*red */
giBitmap(....);

The bitmap is white! The GL_CURRENT_RASTER_COLOR is set to white wleasterPos3fv()
is called. The second call gdColor3f() changes the value of GL_CURRENT_COLOR for future
geometric rendering, but the color used to render the bitmap is unchanged.

To obtain the current raster color or index, you can use the query comgh@etiSloatv()or
glGetintegerv(with GL_CURRENT_RASTER_COLOR or GL_CURRENT_RASTER_INDEX as
the first argument.

Fonts and Display Lists

Display lists are discussed in general termShapter 7However, a few of the display-list
management commands have special relevance for drawing strings of characters. As you read thi:
section, keep in mind that the ideas presented here apply equally well to characters that are drawr
using bitmap data and those drawn using geometric primitives (points, lines, and polygons). (See
"Executing Multiple Display Lists" in Chapterf@r an example of a geometric font.)

A font typically consists of a set of characters, where each character has an identifying number
(usually the ASCII code) and a drawing method. For a standard ASCII character set, the capital let
A is number 65, B is 66, and so on. The string "DAB" would be represented by the three indices 6¢
65, 66. In the simplest approach, display-list number 65 draws an A, number 66 draws a B, and s(
Then to draw the string 68, 65, 66, just execute the corresponding display lists.

You can use the commagilCallLists()in just this way:
void glCallLists(GLsizei n, GLenum type, const GLvoid *lists);

The first argument, indicates the number of characters to be draypeis usually GL_BYTE, and
listsis an array of character codes.

Since many applications need to draw character strings in multiple fonts and sizes, this simplest

approach isn’t convenient. Instead, you'd like to use 65 as A no matter what font is currently active
You could force font 1 to encode A, B, and C as 1065, 1066, 1067, and font 2 as 2065, 2066, 206
but then any numbers larger than 256 would no longer fit in an 8-bit byte. A better solution is to ad

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images - 6

an offset to every entry in the string and to choose the display list. In this case, font 1 has A, B, an
represented by 1065, 1066, and 1067, and in font 2, they might be 2065, 2066, and 2067. Then to
draw characters in font 1, set the offset to 1000 and draw display lists 65, 66, and 67. To draw that
same string in font 2, set the offset to 2000 and draw the same lists.

To set the offset, use the commatidstBase() For the preceding examples, it should be called with
1000 or 2000 as the (only) argument. Now what you need is a contiguous list of unused display-lis
numbers, which you can obtain fragtGenLists()

GLuint glGenLists(GLsizei range);

This function returns a block odngedisplay-list identifiers. The returned lists are all marked as
"used" even though they’re empty, so that subsequent calG¢oLists()never return the same lists
(unless you've explicitly deleted them previously). Therefore, if you use 4 as the argument and if
glGenlLists(returns 81, you can use display-list identifiers 81, 82, 83, and 84 for your characters. I
glGenlLists()can't find a block of unused identifiers of the requested length, it returns 0. (Note that
the commandjiDeleteLists()makes it easy to delete all the lists associated with a font in a single
operation.)

Most American and European fonts have a small number of characters (fewer than 256), so it's ea
to represent each character with a different code that can be stored in a single byte. Asian fonts,
among others, may require much larger character sets, so a byte—per—character encoding is impo:
OpenGL allows strings to be composed of 1-, 2—, 3—, or 4-byte characters thtgpepettzaneter

in glCallLists(). This parameter can have any of the following values:

GL_BYTE GL_UNSIGNED_BYTE
GL_SHORT GL_UNSIGNED_SHORT
GL_INT GL_UNSIGNED_INT
GL_FLOAT GL_2_BYTES
GL_3_BYTES GL_4 BYTES

(See'Executing Multiple Display Lists" in Chapterf@r more information about these values.)

Defining and Using a Complete Font

TheglBitmap()command and the display-list mechanism described in the previous section make it
easy to define a raster font. ixample 8-2he upper—case characters of an ASCII font are defined.
In this example, each character has the same width, but this is not always the case. Once the
characters are defined, the program prints the message "THE QUICK BROWN FOX JUMPS OVEI
A LAZY DOG".

The code irExample 8- similar to the F example, except that each character’s bitmap is stored in
its own display list. The display list identifier, when combined with the offset returned by
glGenlLists() is equal to the ASCII code for the character.

Example 8-2 Drawing a Complete Font: font.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images - 7

#include <string.h>

GLubyte space[] =

{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0
0, 0x00, 0x00};
GLubyte letters[][13] = {

{0x00, 0x00, 0xc3, 0xc3, 0xc3, 0xc3, Oxff, Oxc3, 0xc3, 0xc3, 0x6
6, 0x3c, 0x18},

{0x00, 0x00, Oxfe, 0xc7, Oxc3, 0xc3, Oxc7, Oxfe, Oxc7, Oxc3, Oxc
3, 0xc7, Oxfe},

{0x00, 0x00, Ox7e, 0xe7, OxcO, 0xcO0, 0xc0, 0xc0, OxcO, 0xcO, Oxc
0, Oxe7, 0x7e},

{0x00, 0x00, Oxfc, Oxce, Oxc7, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, Oxc
7, Oxce, Oxfc},

{0x00, 0x00, Oxff, 0xcO, 0xc0, 0xc0, 0xcO, Oxfc, OxcO, 0xcO, Oxc
0, 0xc0, Oxff},

{0x00, 0x00, 0xcO0, 0xc0, 0xc0, 0xc0, 0xc0, 0xcO, Oxfc, OxcO, Oxc
0, 0xc0, Oxff},

{0x00, 0x00, Ox7e, 0xe7, Oxc3, 0xc3, 0xcf, O0xc0, 0xcO, OxcO, Oxc
0, Oxe7, 0x7e},

{0x00, 0x00, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, Oxff, 0xc3, 0xc3, Oxc
3, 0xc3, 0xc3},

{0x00, 0x00, Ox7e, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, Ox1
8, 0x18, 0x7e},

{0x00, 0x00, 0x7c, Oxee, 0xc6, 0x06, 0x06, 0x06, 0x06, 0x06, 00
6, 0x06, 0x06},

{0x00, 0x00, 0xc3, Oxc6, Oxcc, Oxd8, 0xf0, Oxe0, OxfO, Oxd8, Oxc
¢, 0xc6, 0xc3},

{0x00, 0x00, Oxff, 0xcO, 0xc0, 0xc0, 0xc0, Oxc0, 0xcO, 0xc0, Oxc
0, 0xc0, 0xc0},

{0x00, 0x00, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, Oxdb, Oxff, Oxf
f, Oxe7, Oxc3},

{0x00, 0x00, Oxc7, Oxc7, Oxcf, Oxcf, Oxdf, Oxdb, Oxfb, Oxf3, Oxf
3, 0xe3, 0xe3},

{0x00, 0x00, Ox7e, 0xe7, Oxc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, Oxc
3, Oxe7, 0x7e},

{0x00, 0x00, 0xcO0, Oxc0, 0xc0, 0xc0, 0xc0, Oxfe, 0xc7, Oxc3, Oxc
3, 0xc7, Oxfe},

{0x00, 0x00, 0Ox3f, 0x6e, Oxdf, Oxdb, Oxc3, 0xc3, 0xc3, 0xc3, Oxc
3, 0x66, 0x3c},

{0x00, 0x00, 0xc3, Oxc6, Oxcc, Oxd8, 0xf0, Oxfe, Oxc7, Oxc3, Oxc
3, 0xc7, Oxfe},

{0x00, 0x00, Ox7e, Oxe7, Ox03, 0x03, 0x07, Ox7e, Oxe0, OxcO, Oxc
0, Oxe7, Ox7e},

{0x00, 0x00, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, Ox1
8, 0x18, 0xff},

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images - 8

{0x00, 0x00, 0x7e, 0xe7, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, Oxc
3, 0xc3, 0xc3},

{0x00, 0x00, 0x18, 0x3c, 0x3c, 0x66, 0x66, 0xc3, 0xc3, 0xc3, Oxc
3, 0xc3, 0xc3},

{0x00, 0x00, 0xc3, Oxe7, Oxff, Oxff, Oxdb, Oxdb, Oxc3, 0xc3, Oxc
3, 0xc3, 0xc3},

{0x00, 0x00, 0xc3, 0x66, 0x66, 0x3c, 0x3c, 0x18, 0x3c, 0x3c, 0x6
6, 0x66, 0xc3},

{0x00, 0x00, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x3c, 0x3c, Ox6
6, 0x66, 0xc3},

{0x00, 0x00, 0xff, 0xcO, 0xc0, 0x60, 0x30, 0x7e, 0x0c, 0x06, 0x0
3, 0x03, 0xff}
3

GLuint fontOffset;

void makeRasterFont(void)

{
GLuint i, j;
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

fontOffset = glGenLists (128);

for (i=0,j="A"; i < 26; i++,j++) {
gINewList(fontOffset + j, GL_COMPILE);
glBitmap(8, 13, 0.0, 2.0, 10.0, 0.0, letters]i]);
glEndList();

}

gINewList(fontOffset + * *, GL_COMPILE);

glBitmap(8, 13, 0.0, 2.0, 10.0, 0.0, space);

glEndList();

void init(void)

{
glShadeModel (GL_FLAT);
makeRasterFont();

}

void printString(char *s)
{
glPushAttrib (GL_LIST_BIT);
glListBase(fontOffset);
glCallLists(strlen(s), GL_UNSIGNED_BYTE, (GLubyte *) s);
glPopAittrib ();
}

[* Everything above this line could be in a library

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images - 9

* that defines a font. To make it work, you've got
* to call makeRasterFont() before you start making
* calls to printString().
*/
void display(void)
{

GLfloat white[3] ={ 1.0, 1.0, 1.0 };

glClear(GL_COLOR_BUFFER_BIT);
glColor3fv(white);

glRasterPos2i(20, 60);

printString("THE QUICK BROWN FOX JUMPS");
glRasterPos2i(20, 40);

printString("OVER A LAZY DOG");

glFlush ();

void reshape(int w, int h)

{
glViewport(0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode(GL_PROJECTION);
glLoadldentity();
glOrtho (0.0, w, 0.0, h, 1.0, 1.0);
glMatrixMode(GL_MODELVIEW);

void keyboard(unsigned char key, int x, int y)
{
switch (key) {
case 27:
exit(0);

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode(GLUT_SINGLE | GLUT_RGB);
glutinitWindowsSize (300, 100);
glutlnitWindowPosition (100, 100);
glutCreateWindow(argv[0]);
init();
glutReshapeFunc(reshape);
glutkeyboardFunc(keyboard);
glutDisplayFunc(display);

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 10

glutMainLoop();
return O;

Images

An image is similar to a bitmap, but instead of containing only a single bit for each pixel in a
rectangular region of the screen, an image can contain much more information. For example, an
image can contain a complete (R, G, B, A) color stored at each pixel. Images can come from seve
sources, such as

A photograph that's digitized with a scanner

An image that was first generated on the screen by a graphics program using the graphics
hardware and then read back, pixel by pixel

A software program that generated the image in memory pixel by pixel
The images you normally think of as pictures come from the color buffers. However, you can read

write rectangular regions of pixel data from or to the depth buffer or the stencil buffeCH{Sater
10for an explanation of these other buffers.)

In addition to simply being displayed on the screen, images can be used for texture maps, in whict
case they're essentially pasted onto polygons that are rendered on the screen in the normal way. (
Chapter Sor more information about this technique.)

Reading, Writing, and Copying Pixel Data
OpenGL provides three basic commands that manipulate image data:

glReadPixels()) Reads a rectangular array of pixels from the framebuffer and stores the data ir
processor memory.

glDrawPixels(1] Writes a rectangular array of pixels from data kept in processor memory into
the framebuffer at the current raster position specifiegiRgsterPos*()

glCopyPixels(] Copies a rectangular array of pixels from one part of the framebuffer to
another. This command behaves similarly to a cajlReadPixels(followed by a call to
glDrawPixels() but the data is never written into processor memory.

For the aforementioned commands, the order of pixel data processing operations is $tigune in
8-3

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 11

FPar-Vertex
glResterPos® Operalions &

Primicve [

Assembly

Reasterizalion = Fragment Frame

= (fog, texture) Bufar
Processor | glDrawPixels Operaticns
Meamary i |

glReadPixels L.

giCopyPixels

Figure 8-3 Simplistic Diagram of Pixel Data Flow

The basic ideas iRigure 8—are correct. The coordinatesgiRasterPos*()which specify the

current raster position used giDrawPixels(JandglCopyPixels() are transformed by the geometric
processing pipeline. BotiiDrawPixels()andglCopyPixels(are affected by rasterization and
per-fragment operations. (But when drawing or copying a pixel rectangle, there’'s almost never a
reason to have fog or texture enabled.)

However, additional steps arise because there are many kinds of framebuffer data, many ways to
store pixel information in computer memory, and various data conversions that can be performed
during the reading, writing, and copying operations. These possibilities translate to many different
modes of operation. If all your program does is copy images on the screen or read them into mem:
temporarily so that they can be copied out later, you can ignore most of these modes. However, if
want your program to modify the data while it's in meniofgr example, if you have an image

stored in one format but the window requires a different fdrnoatif you want to save image data to

a file for future restoration in another session or on another kind of machine with significantly
different graphical capabilities, you have to understand the various modes.

The rest of this section describes the basic commands in detail. The following sections discuss the
details of the series of imaging operations that comprise the Imaging Pipeline: pixel-storage mode
pixel-transfer operations, and pixel-mapping operations.

Reading Pixel Data from Frame Buffer to Processor Memory

void gIReadPixekGLint x, GLinty, GLsizeiwidth, GLsizeiheight
GLenuntormat, GLenuntype GLvoid *pixels;

Reads pixel data from the framebuffer rectangle whose lower-left cornex,ig)and whose
dimensions argvidth andheightand stores it in the array pointed to fixels formatindicates
the kind of pixel data elements that are read (an index value or an R, G, B, or A component
value, as listed iMable 8-)1 andtypeindicates the data type of each element {sdde 8-2

If you are usingylReadPixels(Jo obtain RGBA or color-index information, you may need to clarify
which buffer you are trying to access. For example, if you have a double—buffered window, you ne
to specify whether you are reading data from the front buffer or back buffer. To control the current
read source buffer, callReadBuffer() (Se€'Selecting Color Buffers for Writing and Reading" in

Chapter 10

format Constant Pixel Format

GL_COLOR_INDEX A single color index

GL_RGB A red color component, followed by a green color

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 12

component, followed by a blue color component

GL_RGBA A red color component, followed by a green color
component, followed by a blue color component,
followed by an alpha color component

GL_RED A single red color component

GL_GREEN A single green color component

GL_BLUE A single blue color component

GL_ALPHA A single alpha color component

GL_LUMINANCE A single luminance component

GL_LUMINANCE_ALPHA A luminance component followed by an alpha color
component

GL_STENCIL_INDEX A single stencil index

GL_DEPTH_COMPONENT A single depth component

Table 8-1Pixel Formats for gIReadPixels() or glDrawPixels()

type Constant Data Type

GL_UNSIGNED_BYTE unsigned 8-bit integer

GL_BYTE signed 8-bit integer

GL_BITMAP single bits in unsigned 8-bit integers using the
same format agIBitmap()

GL_UNSIGNED_SHORT unsigned 16-bit integer

GL_SHORT signed 16-bit integer

GL_UNSIGNED_INT unsigned 32-bit integer

GL_INT signed 32-bit integer

GL_FLOAT single—precision floating point

Table 8-2 Data Types for glReadPixels() or glDrawPixels()

Remember that, depending on the format, anywhere from one to four elements are read (or writter
For example, if the format is GL_RGBA and you're reading into 32-bit integers (th&yjisif

equal to GL_UNSIGNED_INT or GL_INT), then every pixel read requires 16 bytes of storage (four
components four bytes/component).

Each element of the image is stored in memory as indicatédtig 8-2If the element represents a
continuous value, such as a red, green, blukimimance component, each value is scaled to fit into
the available number of bits. For example, assume the red component is initially specified as a
floating—point value between 0.0 and 1.0. If it needs to be packed into an unsigned byte, only 8 bit:
precision are kept, even if more bits are allocated to the red component in the framebuffer.
GL_UNSIGNED_SHORT and GL_UNSIGNED_INT give 16 and 32 bits of precision, respectively.
The normal (signed) versions of GL_BYTE, GL_SHORT, and GL_INT have 7, 15, and 31 bits of
precision, since the negative values are typically not used.

If the element is an index (a color index or a stencil index, for example), and the type is not
GL_FLOAT, the value is simply masked against the available bits in the type. The signed

version§]l GL_BYTE, GL_SHORT, and GL_INT have masks with one fewer bit. For example, if a
color index is to be stored in a signed 8-bit integer, it's first masked against 0x7f. If the type is
GL_FLOAT, the index is simply converted into a single—precision floating—point number (for
example, the index 17 is converted to the float 17.0).

Writing Pixel Data from Processor Memory to Frame Buffer

void glDrawPixelgGLsizeiwidth, GLsizeiheight GLenunformat,

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 13

GLenuntype, const GLvoid pixels;
Draws a rectangle of pixel data with dimensiavidth andheight The pixel rectangle is drawn
with its lower—left corner at the current raster positifmmmatandtype have the same meaning
as withglReadPixels() (For legal values foformat andtype seeTable 8—-hndTable 8-2 The
array pointed to byixels contains the pixel data to be drawn. If the current raster position is
invalid, nothing is drawn, and the raster position remains invalid.

Example 8-8 a portion of a program, which usgi®rawPixels()to draw an pixel rectangle in the
lower-left corner of a windownakeCheckimage(€reates a 64-by-64 RGB array of a
black—and-white checkerboard imagfeasterPos2{,0) positions the lower-left corner of the image.
For now, ignoreglPixelStorei()

Example 8-3 Use of glDrawPixels(): image.c

#define checklmageWidth 64
#define checkimageHeight 64
GLubyte checklmage[checkimageHeight][checkimageWidth][3];

void makeCheckimage(void)

{

inti, j, c;

for (i = 0; i < checklmageHeight; i++) {
for (j = O; j < checkimageWidth; j++) {
¢ = ((((i&0x8)==0)"((j&0x8))==0))*255;
checklmage(i][j][0] = (GLubyte) c;
checkimageli][jl[1] = (GLubyte) c;
checklmage(i][j][2] = (GLubyte) c;
}
}
}

void init(void)

{
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel(GL_FLAT);
makeChecklmage();
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

}

void display(void)

{
glClear(GL_COLOR_BUFFER_BIT);
glRasterPos2i(0, 0);
glDrawPixels(checklmageWidth, checkimageHeight, GL_RGB,

GL_UNSIGNED_BYTE, checkimage);

glFlush();

}

When usingylDrawPixels()to write RGBA or color—index information, you may need to control the

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 14

current drawing buffers witglDrawBuffer() which, along withglReadBuffer()is also described in
"Selecting Color Buffers for Writing and Reading" in Chapter 10

Copying Pixel Data within the Frame Buffer

void glCopyPixel§GLint x, GLinty, GLsizeiwidth, GLsizeiheight

GLenumbuffer);
Copies pixel data from the framebuffer rectangle whose lower-left corner,gjaarid whose
dimensions argvidth andheight The data is copied to a new position whose lower-left corner is
given by the current raster positidoufferis either GL_COLOR, GL_STENCIL, or GL_DEPTH,
specifying the framebuffer that is usgtCopyPixels(behaves similarly to gIReadPixels()
followed by aylDrawPixels() with the following translation for thieufferto formatparameter:

If bufferis GL_DEPTH or GL_STENCIL, then GL_DEPTH_COMPONENT or
GL_STENCIL_INDEX is used, respectively.

If GL_COLOR is specified, GL_RGBA or GL_COLOR_INDEX is used, depending on whether
the system is in RGBA or color-index mode.

Note that there’'s no need fof@mat or data parameter foglCopyPixels() since the data is never
copied into processor memory. The read source buffer and the destination bgifBopyPixels()
are specified bglReadBuffer(andglDrawBuffer()respectively. BotlglDrawPixels()and
glCopyPixels(are used iExample 8-4

For all three functions, the exact conversions of the data going to or from the framebuffer depend ¢
the modes in effect at the time. See the next section for details.

Imaging Pipeline

This section discusses the complete Imaging Pipeline: the pixel-storage modes and pixel-transfer
operations, which include how to set up an arbitrary mapping to convert pixel data. You can also
magnify or reduce a pixel rectangle before it's drawn by caffiRgkelZoom() The order of these
operations is shown iRigure 8-4

unpack
»| PFixel | Pleal-Tranefar Rasterlzatlon Par-

P:lnm o Storage Operations [{including % Fragment [EI‘:#;B
ey =Fﬂ'-'-|'i Modes [*{fand Fixel Map) Plxel Zoom) Cperations r
'Y + f Iy
Taxturae
Mamory

Figure 8-4 Imaging Pipeline

WhenglDrawPixels()is called, the data is first unpacked from processor memory according to the
pixel-storage modes that are in effect and then the pixel-transfer operations are applied. The rest
pixels are then rasterized. During rasterization, the pixel rectangle may be zoomed up or down,
depending on the current state. Finally, the fragment operations are applied and the pixels are writ
into the framebuffer. (Se@esting and Operating on Fragments" in Chaptefiot@ discussion of

the fragment operations.)

WhenglReadPixels(Js called, data is read from the framebuffer, the pixel-transfer operations are

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 15

performed, and then the resulting data is packed into processor memory.

glCopyPixels(applies all the pixel-transfer operations during what would bgiReadPixels()
activity. The resulting data is written as it would begtiyrawPixels() but the transformations aren’t
applied a second tim&igure 8—-shows howglCopyPixels(moves pixel data, starting from the
frame buffer.

Pixel-Transfer Rasterization Per- Frame
Operationa {including | Fragment = Buffer
and Pixel Map) PFixel Zoom] Operationa {start)

t |

Figure 8-5 glCopyPixels() Pixel Path

From"Drawing the Bitmap'andFigure 8—gyou see that rendering bitmaps is simpler than rendering
images. Neither the pixel-transfer operations nor the pixel-zoom operation are applied.

unpack Plxal Per-
P"Hm:r:r * Storage ™ Rasterization ™ Fragment :Tm‘:
Modes Operations

Figure 8-6 gIBitmap() Pixel Path

Note that the pixel-storage modes and pixel-transfer operations are applied to textures as they ar
read from or written to texture memofjigure 8—&hows the effect oglTexImage*()
glTexSublmage*(JandglGetTexIimage()

unpack
e Pl PixelTransler

Frocassor o
Slorage Opearations
Memory la—— ‘Modes [*and Pixel Map)

Pt I,

Texture
Mamary

Figure 8-7 glTexImage*(), glTexSublmage*(), and glGetTeximage() Pixel Paths

As seen irFigure 8—8when pixel data is copied from the framebuffer into texture memory
(glCopyTeximage*(pr glCopyTexSublmage?’only pixel-transfer operations are applied. (See
Chapter Sor more information on textures.)

Pixel-Transier Frama
Oparations Buffer
{end Pixel Map) (start)
[.#
Texture
Mamary

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 16

Figure 8-8 glCopyTeximage*() and glCopyTexSublmage*() Pixel Paths

Pixel Packing and Unpacking
Packing and unpacking refer to the way that pixel data is written to and read from processor memc

An image stored in memory has between one and four chunks of dataetsihethtsThe data

might consist of just the color index or the luminance (luminance is the weighted sum of the red,
green, and blue values), or it might consist of the red, green, blue, and alpha components for each
pixel. The possible arrangements of pixel datdponats determine the number of elements stored
for each pixel and their order.

Some elements (such as a color index or a stencil index) are integers, and others (such as the red
green, blue, and alpha components, or the depth component) are floating—point values, typically
ranging between 0.0 and 1.0. Floating—point components are usually stored in the framebuffer witt
lower resolution than a full floating—point number would require (for example, color components mi
be stored in 8 bits). The exact number of bits used to represent the components depends on the
particular hardware being used. Thus, it's often wasteful to store each component as a full 32-bit
floating—point number, especially since images can easily contain a million pixels.

Elements can be stored in memory as various data types, ranging from 8-bit bytes to 32-bit intege
or floating—point numbers. OpenGL explicitly defines the conversion of each component in each
format to each of the possible data types. Keep in mind that you may lose data if you try to store a
high-resolution component in a type represented by a small number of bits.

Controlling Pixel-Storage Modes

Image data is typically stored in processor memory in rectangular two— or three—dimensional array
Often, you want to display or store a subimage that corresponds to a subrectangle of the array. In
addition, you might need to take into account that different machines have different byte—ordering
conventions. Finally, some machines have hardware that is far more efficient at moving data to an
from the framebuffer if the data is aligned on 2-byte, 4-byte, or 8—byte boundaries in processor
memory. For such machines, you probably want to control the byte alignment. All the issues raisec
this paragraph are controlled as pixel-storage modes, which are discussed in the next subsection.
specify these modes by usigtPixelStore*() which you've already seen used in a couple of example
programs.

All the possible pixel-storage modes are controlled withlBigelStore*()command. Typically,
several successive calls are made with this command to set several parameter values.

void glPixelStoréif}(GLenumpname TYPEparamn);
Sets the pixel-storage modes, which affect the operatipDrafvPixels() gIReadPixels()
giBitmap() glPolygonStipple()glTeximagelD()glTexImage2D()glTexSubimagelD|)
glTexSublmage2D(andglGetTexlmage()The possible parameter names foameare shown
in Table 8—3along with their data type, initial value, and valid range of values. The
GL_UNPACK?* parameters control how data is unpacked from memogjCawPixels()
glBitmap() glPolygonStipple()glTeximagelD()glTeximage2D()glTexSublmagelDQ(®nd
glTexSublmage2D(Ihe GL_PACK* parameters control how data is packed into memory by
glReadPixels(andglGetTexIimage()

Parameter Name Type Initial Value Valid Range

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 17

GL_UNPACK_SWAP_BYTES, GLboolean FALSE TRUE/FALSE
GL_PACK_SWAP_BYTES

GL_UNPACK_LSB_FIRST, GLboolean FALSE TRUE/FALSE
GL_PACK_LSB_FIRST

GL_UNPACK_ROW_LENGTH, GLint 0 any nonnegative
GL_PACK_ROW_LENGTH integer
GL_UNPACK_SKIP_ROWS, GLint 0 any nonnegative
GL_PACK_SKIP_ROWS integer
GL_UNPACK_SKIP_PIXELS, GLint 0 any nonnegative
GL_PACK_SKIP_PIXELS integer
GL_UNPACK_ALIGNMENT, GLint 4 1,2,4,8

GL_PACK_ALIGNMENT

Table 8-3glPixelStore() Parameters

Since the corresponding parameters for packing and unpacking have the same meanings, they're
discussed together in the rest of this section and referred to without the GL_PACK or GL_UNPACI
prefix. For example, *SWAP_BYTES refers to GL_PACK_SWAP_BYTES and
GL_UNPACK_SWAP_BYTES.

If the *SWAP_BYTES parameter is FALSE (the default), the ordering of the bytes in memory is
whatever is native for the OpenGL client; otherwise, the bytes are reversed. The byte reversal app
to any size element, but really only has a meaningful effect for multibyte elements.

Note: As long as your OpenGL application doesn’t share images with other machines, you can
ignore the issue of byte ordering. If your application must render an OpenGL image that was creat
on a different machine and the "endianness" of the two machines differs, byte ordering can be
swapped using *SWAP_BYTES. However, *SWAP_BYTES does not allow you to reorder element
(for example, to swap red and green).

The *LSB_FIRST parameter applies when drawing or reading 1-bit images or bitmaps, for which &
single bit of data is saved or restored for each pixel. If *LSB_FIRST is FALSE (the default), the bits
are taken from the bytes starting with the most significant bit; otherwise, they're taken in the oppos
order. For example, if *LSB_FIRST is FALSE, and the byte in question is 0x31, the bits, in order, a
{0,0,1,1,0,0,0, 1}. If *LSB_FIRST is TRUE, the orderis {1, 0,0, 0, 1, 1, O, 0}.

Sometimes you want to draw or read only a subrectangle of the entire rectangle of image data stol
in memory. If the rectangle in memory is larger than the subrectangle that's being drawn or read, y
need to specify the actual length (measured in pixels) of the larger rectangle with *‘ROW_LENGTH
If *ROW_LENGTH is zero (which it is by default), the row length is understood to be the same as
the width that's specified witlReadPixels()gIDrawPixels() or glCopyPixels() You also need to
specify the number of rows and pixels to skip before starting to copy the data for the subrectangle.
These numbers are set using the parameters *SKIP_ROWS and *SKIP_PIXELS, as dfigurein

8-9 By default, both parameters are 0, so you start at the lower-left corner.

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 18

F 3

*ROW_LENGTH

subimage

*SKIP_PIXELS
- -

4

*SKIP_ROWS image

Figure 8-9 *SKIP_ROWS, *SKIP_PIXELS, and *ROW_LENGTH Parameters

Often a particular machine’s hardware is optimized for moving pixel data to and from memory, if th
data is saved in memory with a particular byte alignment. For example, in a machine with 32-bit
words, hardware can often retrieve data much faster if it's initially aligned on a 32-bit boundary,
which typically has an address that is a multiple of 4. Likewise, 64-bit architectures might work
better when the data is aligned to 8—byte boundaries. On some machines, however, byte alignmer
makes no difference.

As an example, suppose your machine works better with pixel data aligned to a 4-byte boundary.
Images are most efficiently saved by forcing the data for each row of the image to begin on a 4-by
boundary. If the image is 5 pixels wide and each pixel consists of 1 byte each of red, green, and bl
information, a row requires’3 = 15 bytes of data. Maximum display efficiency can be achieved if
the first row, and each successive row, begins on a 4-byte boundary, so there is 1 byte of waste ir
memory storage for each row. If your data is stored like this, set the *ALIGNMENT parameter
appropriately (to 4, in this case).

If *ALIGNMENT is set to 1, the next available byte is used. If it's 2, a byte is skipped if necessary &
the end of each row so that the first byte of the next row has an address that's a multiple of 2. In th
case of bitmaps (or 1-bit images) where a single bit is saved for each pixel, the same byte alignme
works, although you have to count individual bits. For example, if you're saving a single bit per
pixel, the row length is 75, and the alignment is 4, then each row requires 75/8, or 9 3/8 bytes. Sin
12 is the smallest multiple of 4 that is bigger than 9 3/8, 12 bytes of memory are used for each row
the alignment is 1, then 10 bytes are used for each row, as 9 3/8 is rounded up to the next byte. (T
is a simple use dfIPixelStorei()in Example 8-=4

Pixel-Transfer Operations

As image data is transferred from memory into the framebuffer, or from the framebuffer into
memory, OpenGL can perform several operations on it. For example, the ranges of components ci
be altered normally, the red component is between 0.0 and 1.0, but you might prefer to keep it in
some other range; or perhaps the data you're using from a different graphics system stores the rec
component in a different range. You can even create maps to perform arbitrary conversion of colol

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 19

indices or color components during pixel transfer. Conversions such as these performed during the
transfer of pixels to and from the framebuffer are called pixel-transfer operations. They’re controlle
with theglPixelTransfer*(JandglPixelMap*() commands.

Be aware that although the color, depth, and stencil buffers have many similarities, they don’t beh:
identically, and a few of the modes have special cases for special buffers. All the mode details are
covered in this section and the sections that follow, including all the special cases.

Some of the pixel-transfer function characteristics are seglRittelTransfer*() The other
characteristics are specified witPixelMap*(), which is described in the next section.

void glPixelTransfefif{(GLenumpname TYPBparam);
Sets pixel-transfer modes that affect the operatigiDoawPixels() gIReadPixels()
glCopyPixels()glTeximagelD()glTexImage2D()glCopyTeximagelD(lCopyTeximage2D()
glTexSublmagelD(YITexSubimage2D(yICopyTexSublmagelDEICopyTexSubimage2D()
and glGetTexImage(JThe parametgonamemust be one of those listed in the first column of
Table 8—4and its valueparam must be in the valid range shown.

Parameter Name Type Initial Value Valid Range
GL_MAP_COLOR GLboolean FALSE TRUE/FALSE
GL_MAP_STENCIL GLboolean FALSE TRUE/FALSE
GL_INDEX_SHIFT GLint 0 (-e0,)
GL_INDEX_OFFSET GLint 0 (-e0,)
GL_RED_SCALE GLfloat 1.0 (-e0, o)
GL_GREEN_SCALE GLfloat 1.0 (-e0, o0)
GL_BLUE_SCALE GLfloat 1.0 (-e0, o)
GL_ALPHA_SCALE GLfloat 1.0 (-e0, o0)
GL_DEPTH_SCALE GLfloat 1.0 (-e0,)
GL_RED_BIAS GLfloat 0 (-e0, o)
GL_GREEN_BIAS GLfloat 0 (-e0,)
GL_BLUE_BIAS GLfloat 0 (-e0,)
GL_ALPHA_BIAS GLfloat 0 (-e0,)
GL_DEPTH_BIAS GLfloat 0 (-e0, o)

Table 8-4 glPixelTransfer*() Parameters (continued)

If the GL_MAP_COLOR or GL_MAP_STENCIL parameter is TRUE, then mapping is enabled. See
the next subsection to learn how the mapping is done and how to change the contents of the maps
the other parameters directly affect the pixel component values.

A scale and bias can be applied to the red, green, blue, alpha, and depth components. For examp
you may wish to scale red, green, and blue components that were read from the framebuffer befor
converting them to a luminance format in processor memory. Luminance is computed as the sum
the red, green, and blue components, so if you use the default value for GL_RED_SCALE,
GL_GREEN_SCALE and GL_BLUE_SCALE, the components all contribute equally to the final
intensity or luminance value. If you want to convert RGB to luminance, according to the NTSC
standard, you set GL_RED_SCALE to .30, GL_GREEN_SCALE to .59, and GL_BLUE_SCALE to
A1,

Indices (color and stencil) can also be transformed. In the case of indices a shift and offset are
applied. This is useful if you need to control which portion of the color table is used during renderir

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 20

Pixel Mapping

All the color components, color indices, and stencil indices can be modified by means of a table
lookup before they are placed in screen memory. The command for controlling this mapping is
glPixelMap*().
void glPixelMagdui us ffGLenummap GLintmapsize
constTYPE *valueg
Loads the pixel map indicated lmapwith mapsizeentries, whose values are pointed to by
values Table 8-fists the map names and values; the default sizes are all 1 and the default
values are all 0. Each map’s size must be a power of 2.

Map Name Address Value
GL_PIXEL_MAP_I_TO_I color index color index
GL_PIXEL_MAP_S_TO_S stencil index stencil index
GL_PIXEL_MAP_I_TO_R color index R
GL_PIXEL_MAP_I_TO_G color index G
GL_PIXEL_MAP_I_TO_B color index B
GL_PIXEL_MAP_I TO A color index A
GL_PIXEL_MAP_R_TO_R R R
GL_PIXEL_MAP_G_TO_G G G
GL_PIXEL_MAP_B_TO_B B B
GL_PIXEL_MAP_A_TO_A A A

Table 8-5glPixelMap*() Parameter Names and Values

The maximum size of the maps is machine—dependent. You can find the sizes of the pixel maps
supported on your machine wighGetintegerv() Use the query argument
GL_MAX_PIXEL_MAP_TABLE to obtain the maximum size for all the pixel map tables, and use
GL_PIXEL_MAP_* TO * SIZE to obtain the current size of the specified map. The six maps
whose address is a color index or stencil index must always be sized to an integral power of 2. The
four RGBA maps can be any size from 1 through GL_MAX_PIXEL _MAP_TABLE.

To understand how a table works, consider a simple example. Suppose that you want to create a
256-entry table that maps color indices to color indices using GL_PIXEL_MAP_I_TO_|. You creat
a table with an entry for each of the values between 0 and 255 and initialize the table with
glPixelMap*(). Assume you're using the table for thresholding and want to map indices below 101
(indices 0 to 100) to 0, and all indices 101 and above to 255. In this case, your table consists of 1C
0s and 155 255s. The pixel map is enabled using the rglih@lTransfer*()to set the parameter
GL_MAP_COLOR to TRUE. Once the pixel map is loaded and enabled, incoming color indices
below 101 come out as 0, and incoming pixels between 101 and 255 are mapped to 255. If the
incoming pixel is larger than 255, it's first masked by 255, throwing out all the bits above the eightt
and the resulting masked value is looked up in the table. If the incoming index is a floating—point
value (say 88.14585), it's rounded to the nearest integer value (giving 88), and that number is look
up in the table (giving 0).

Using pixel maps, you can also map stencil indices or convert color indices to RGERé&dang
and Drawing Pixel Rectangle®&r information about the conversion of indices.)
Magnifying, Reducing, or Flipping an Image

After the pixel-storage modes and pixel-transfer operations are applied, images and bitmaps are
rasterized. Normally, each pixel in an image is written to a single pixel on the screen. However, yo

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 21

can arbitrarily magnify, reduce, or even flip (reflect) an image by wiPigelZoom()

void gIPixelZoon(GLfloatzoony, GLfloatzoony);

Sets the magnification or reduction factors for pixel-write operatigibsgwPixels()or
glCopyPixels(), in thex—andy-dimensions. By defaultpony andzoony are 1.0. If they’re both

2.0, each image pixel is drawn to 4 screen pixels. Note that fractional magnification or reductic
factors are allowed, as are negative factors. Negative zoom factors reflect the resulting image
about the current raster position.

During rasterization, each image pixel is treated zzoayxzoony rectangle, and fragments are
generated for all the pixels whose centers lie within the rectangle. More specificaiy Igt) be

the current raster position. If a particular group of elements (index or componentsjtisitha row

and belongs to theth column, consider the region in window coordinates bounded by the rectangle
with corners at

(Xrp + zoony * n, yrp +zoony * m) and &p + zoony(n+1), yrp + zoony(m+1))

Any fragments whose centers lie inside this rectangle (or on its bottom or left boundaries) are
produced in correspondence with this particular group of elements.

A negative zoom can be useful for flipping an image. OpenGL describes images from the bottom r
of pixels to the top (and from left to right). If you have a "top to bottom" image, such as a frame of
video, you may want to uggPixelZoomr{1.0, —1.0) to make the image right side up for OpenGL. Be
sure that you reposition the current raster position appropriately, if needed.

Example 8—4hows the use aflPixelZoom() A checkerboard image is initially drawn in the

lower-left corner of the window. Pressing a mouse button and moving the moug€apgPRixels()

to copy the lower-left corner of the window to the current cursor location. (If you copy the image
onto itself, it looks wacky!) The copied image is zoomed, but initially it is zoomed by the default
value of 1.0, so you won't notice. The ‘2’ and ‘Z’ keys increase and decrease the zoom factors by (
Any window damage causes the contents of the window to be redrawn. Pressing the ‘r’ key resets
image and the zoom factors.

Example 8-4 Drawing, Copying, and Zooming Pixel Data: image.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

#define checkimageWidth 64
#define checkimageHeight 64
GLubyte checklmage[checkimageHeight][checkimageWidth][3];

static GLdouble zoomFactor = 1.0;
static GLint height;

void makeCheckimage(void)

{

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 22

inti, j, c;

for (i = 0; i < checklmageHeight; i++) {
for (j = O; j < checkimageWidth; j++) {
¢ = ((((i&0x8)==0)"((j&0x8))==0))*255;
checklmage(i][j][0] = (GLubyte) c;
checkimage(i][jl[1] = (GLubyte) c;
checklmage(i][j][2] = (GLubyte) c;

void init(void)

{
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel(GL_FLAT);
makeChecklmage();
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

}

void display(void)
{
glClear(GL_COLOR_BUFFER_BIT);
glRasterPos2i(0, 0);
glDrawPixels(checklmageWidth, checkimageHeight, GL_RGB,
GL_UNSIGNED_BYTE, checkimage);
glFlush();

}

void reshape(int w, int h)

{
glViewport(0, O, (GLsizei) w, (GLsizei) h);
height = (GLint) h;
gIMatrixMode(GL_PROJECTION);
glLoadldentity();
gluOrtho2D(0.0, (GLdouble) w, 0.0, (GLdouble) h);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();

void motion(int x, inty)

{

static GLint screeny;
screeny = height — (GLint) y;
glRasterPos2i (x, screeny);

glPixelZoom (zoomFactor, zoomFactor);

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 23

glCopyPixels (0, 0, checklmageWidth, checkimageHeight,

GL_COLOR);
glPixelZzoom (1.0, 1.0);
glFlush ();
}
void keyboard(unsigned char key, int x, int y)
{
switch (key) {
case 1’
case ‘R
zoomFactor = 1.0;
glutPostRedisplay();
printf ("zoomFactor reset to 1.0\n");
break;
case ‘Z".
zoomFactor += 0.5;
if (zoomFactor >= 3.0)
zoomFactor = 3.0;
printf ("zoomFactor is now %4.1f\n", zoomFactor);
break;
case ‘Z’:
zoomFactor —= 0.5;
if (zoomFactor <= 0.5)
zoomFactor = 0.5;
printf ("zoomFactor is now %4.1f\n", zoomFactor);
break;
case 27:
exit(0);
break;
default:
break;
}
}

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode(GLUT_SINGLE | GLUT_RGB);
glutinitWindowSize (250, 250);
glutlnitWindowPosition(100, 100);
glutCreateWindow(argv[0]);
init();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutkeyboardFunc(keyboard);

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 24

glutMotionFunc(motion);
glutMainLoop();
return O;

}

Reading and Drawing Pixel Rectangles

This section describes the reading and drawing processes in detail. The pixel conversions perform
when going from framebuffer to memory (reading) are similar but not identical to the conversions
performed when going in the opposite direction (drawing), as explained in the following sections.
You may wish to skip this section the first time through, especially if you do not plan to use the
pixel-transfer operations right away.

The Pixel Rectangle Drawing Process

Figure 8-1@nd the following list describe the operation of drawing pixels into the framebuffer.

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 25

biyte shart int loat
Data Stream
{index or companent)

¥
unpack
il RGBAL, £
convart
fo [0, 11
=
k |
convert ,
L-=REBA Pixal-
5 Slorage
Modas
Pixeal-
¥ L4 Transfar
sosle shift Modas
biaz cffset
=
¥ ¥
RGEBA=RGBA index*=RGHBA index ®™index
lookup lookup lookup
¥ l
tlamp mask lo
o 0[Q,1] [0.0, 261-1]
RGEA Index
£ {stancil, color indax}
Pixel Data Qut

Figure 8-10 Drawing Pixels with glDrawPixels()

1. If the pixels aren’t indices (that is, the format isn't GL_ COLOR_INDEX or
GL_STENCIL_INDEX), the first step is to convert the components to floating—point format if
necessary. (Sekable 4-Xor the details of the conversion.)

2. Ifthe format is GL_LUMINANCE or GL_LUMINANCE_ALPHA, the luminance element is
converted into R, G, and B, by using the luminance value for each of the R, G, and B
components. In GL_LUMINANCE_ALPHA format, the alpha value becomes the A value. If
GL_LUMINANCE is specified, the A value is set to 1.0.

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 26

3. Each component (R, G, B, A, or depth) is multiplied by the appropriate scale, and the appropri
bias is added. For example, the R component is multiplied by the value corresponding to
GL_RED_SCALE and added to the value corresponding to GL_RED_BIAS.

4. If GL_MAP_COLOR is true, each of the R, G, B, and A components is clamped to the range
[0.0,1.0], multiplied by an integer one less than the table size, truncated, and looked up in the
table. (Se€Tips for Improving Pixel Drawing Rate$tr more details.)

5. Next, the R, G, B, and A components are clamped to [0.0,1.0], if they weren't already, and
converted to fixed—point with as many bits to the left of the binary point as there are in the
corresponding framebuffer component.

6. If you're working with index values (stencil or color indices), then the values are first converted
to fixed—point (if they were initially floating—point numbers) with some unspecified bits to the
right of the binary point. Indices that were initially fixed—point remain so, and any bits to the
right of the binary point are set to zero.

The resulting index value is then shifted right or left by the absolute value of
GL_INDEX_SHIFT bits; the value is shifted left if GL_INDEX_SHIFT > 0 and right otherwise.
Finally, GL_INDEX_OFFSET is added to the index.

7. The next step with indices depends on whether you're using RGBA mode or color-index mode
In RGBA mode, a color index is converted to RGBA using the color components specified by
GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_|_TO_B, and
GL_PIXEL_MAP_I_TO_A. (SeéPixel Mapping"for details.) Otherwise, if GL_MAP_COLOR
is GL_TRUE, a color index is looked up through the table GL_PIXEL_MAP_|_TO_|I. (If
GL_MAP_COLOR is GL_FALSE, the index is unchanged.) If the image is made up of stencil
indices rather than color indices, and if GL_MAP_STENCIL is GL_TRUE, the index is looked
up in the table corresponding to GL_PIXEL_MAP_S _TO_S. If GL_MAP_STENCIL is FALSE,
the stencil index is unchanged.

8. Finally, if the indices haven't been converted to RGBA, the indices are then masked to the
number of bits of either the color-index or stencil buffer, whichever is appropriate.

The Pixel Rectangle Reading Process

Many of the conversions done during the pixel rectangle drawing process are also done during the
pixel rectangle reading process. The pixel reading process is shé&iguie 8—1hnd described in
the following list.

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 27

Pixels fram Framabuffar

RGBA Index
z {stencil, color index)
¥
map
to [0, 1]
-
¥
scale shift
bias offset
s G |
¥ ¥ ¥
RGEA-=RGBA Index -=RGBA index -*=index
lookup lookup lookup
|
* f
clamp mask to Pixel-
te [0, 1] [0.0, 2n-1] Transfer
= = Modes
¥ Pixel-
convert Storage
to L Modes
- RGBA
Z
Index
. o pack |«
" e
byle short int float
Data Stream
(index or componant)
fo mamory

Figure 8—-11 Reading Pixels with glReadPixels()

1. If the pixels to be read aren’t indices (that is, the format isn't GL_COLOR_INDEX or
GL_STENCIL_INDEX), the components are mapped to [0.0[110ht is, in exactly the
opposite way that they are when written.

2. Next, the scales and biases are applied to each component. If GL_MAP_COLOR is GL_TRUE
they’re mapped and again clamped to [0.0,1.0]. If luminance is desired instead of RGB, the R,
and B components are added (L=R + G + B).

3. If the pixels are indices (color or stencil), they're shifted, offset, and, if GL_MAP_COLOR is
GL_TRUE, also mapped.

4. |If the storage format is either GL_COLOR_INDEX or GL_STENCIL_INDEX, the pixel indices
are masked to the number of bits of the storage type (1, 8, 16, or 32) and packed into memory
previously described.

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 28

5. If the storage format is one of the component kind (such as luminance or RGB), the pixels are
always mapped by the index-to—RGBA maps. Then, they're treated as though they had been
RGBA pixels in the first place (including potential conversion to luminance).

6. Finally, for both index and component data, the results are packed into memory according to tl
GL_PACK* modes set witlglPixelStore*()

The scaling, bias, shift, and offset values are the same as those used when drawing pixels, so if yc
both reading and drawing pixels, be sure to reset these components to the appropriate values befc
doing a read or a draw. Similarly, the various maps must be properly reset if you intend to use maj
for both reading and drawing.

Note: It might seem that luminance is handled incorrectly in both the reading and drawing
operations. For example, luminance is not usually equally dependent on the R, G, and B compone
as it may be assumed from bdétigure 8—1@ndFigure 8—11If you wanted your luminance to be
calculated such that the R component contributed 30 percent, the G 59 percent, and the B 11 perc
you can set GL_RED_SCALE to .30, GL_RED_BIAS to 0.0, and so on. The computed L is then
.30R + .59G + .11B.

Tips for Improving Pixel Drawing Rates

As you can see, OpenGL has a rich set of features for reading, drawing and manipulating pixel dal
Although these features are often very useful, they can also decrease performance. Here are som
for improving pixel draw rates.

For best performance, set all pixel-transfer parameters to their default values, and set pixel zc
to (1.0,1.0).

A series of fragment operations is applied to pixels as they are drawn into the framebuffer. (Se
"Testing and Operating on Fragments" in Chaptey B6r optimum performance disable all
fragment operations.

While performing pixel operations, disable other costly states, such as texturing and lighting.

If you use an image format and type that matches the framebuffer, you can reduce the amoun
work that the OpenGL implementation has to do. For example, if you are writing images to an
RGB framebuffer with 8 bits per component, gdlbrawPixels()with formatset to RGB and
typeset to UNSIGNED_BYTE.

For some implementations, unsigned image formats are faster to use than signed image form:

It is usually faster to draw a large pixel rectangle than to draw several small ones, since the cc
of transferring the pixel data can be amortized over many pixels.

If possible, reduce the amount of data that needs to be copied by using small data types (for
example, use GL_UNSIGNED_BYTE) and fewer components (for example, use format
GL_LUMINANCE_ALPHA).

Pixel-transfer operations, including pixel mapping and values for scale, bias, offset, and shift
other than the defaults, may decrease performance.

OpenGL Programming Guide — Chapter 8, Drawing Pixels, Bitmaps, Fonts, and Images — 29

