Chapter 9
Texture Mapping

An Overview and an Example
Steps in Texture Mapping
A Sample Program
Specifying the Texture
Texture Proxy
Replacing All or Part of a Texture Image
One-Dimensional Textures
Using a Texture’s Borders
Multiple Levels of Detail
Filtering
Texture Objects
Naming A Texture Object
Creating and Using Texture Objects
Cleaning Up Texture Objects
A Working Set of Resident Textures
Texture Functions
Assigning Texture Coordinates
Computing Appropriate Texture Coordinates
Repeating and Clamping Textures
Automatic Texture—Coordinate Generation
Creating Contours
Environment Mapping
Advanced Features
The Texture Matrix Stack
The q Coordinate

OpenGL Programming Guide — Chapter 9, Texture Mapping - 1

Chapter 9
Texture Mapping

Chapter Objectives

After reading this chapter, you'll be able to do the following:
Understand what texture mapping can add to your scene
Specify a texture image
Control how a texture image is filtered as it's applied to a fragment

Create and manage texture images in texture objects and, if available, control a
high—performance working set of those texture objects

Specify how the color values in the image combine with those of the fragment to which it's
being applied

Supply texture coordinates to indicate how the texture image should be aligned to the objects
your scene

Use automatic texture coordinate generation to produce effects like contour maps and
environment maps

So far, every geometric primitive has been drawn as either a solid color or smoothly shaded betwe
the colors at its verticgsthat is, they've been drawn without texture mapping. If you want to draw a
large brick wall without texture mapping, for example, each brick must be drawn as a separate
polygon. Without texturing, a large flat wallwhich is really a single rectanglemight require
thousands of individual bricks, and even then the bricks may appear too smooth and regular to be
realistic.

Texture mapping allows you to glue an image of a brick wall (obtained, perhaps, by scanning in a
photograph of a real wall) to a polygon and to draw the entire wall as a single polygon. Texture
mapping ensures that all the right things happen as the polygon is transformed and rendered. For
example, when the wall is viewed in perspective, the bricks may appear smaller as the wall gets
farther from the viewpoint. Other uses for texture mapping include depicting vegetation on large
polygons representing the ground in flight simulation; wallpaper patterns; and textures that make
polygons look like natural substances such as marble, wood, or cloth. The possibilities are endless
Although it's most natural to think of applying textures to polygons, textures can be applied to all
primitivesd points, lines, polygons, bitmaps, and images. Plates 6, 8, 18-21, 24-27, and 29-31 all
demonstrate the use of textures.

Because there are so many possibilities, texture mapping is a fairly large, complex subject, and yo
must make several programming choices when using it. For instance, you can map textures to
surfaces made of a set of polygons or to curved surfaces, and you can repeat a texture in one or b
directions to cover the surface. A texture can even be one—dimensional. In addition, you can
automatically map a texture onto an object in such a way that the texture indicates contours or oth
properties of the item being viewed. Shiny objects can be textured so that they appear to be in the
center of a room or other environment, reflecting the surroundings off their surfaces. Finally, a
texture can be applied to a surface in different ways. It can be painted on directly (like a decal plac
on a surface), used to modulate the color the surface would have been painted otherwise, or used

OpenGL Programming Guide — Chapter 9, Texture Mapping - 1

blend a texture color with the surface color. If this is your first exposure to texture mapping, you
might find that the discussion in this chapter moves fairly quickly. As an additional reference, you
might look at the chapter on texture mappinguimdamentals of Three—Dimensional Computer
Graphicsby Alan Watt (Reading, MA: Addison—-Wesley Publishing Company, 1990).

Textures are simply rectangular arrays of dafiar example, color data, luminance data, or color and
alpha data. The individual values in a texture array are often ¢talels What makes texture

mapping tricky is that a rectangular texture can be mapped to nonrectangular regions, and this mu
be done in a reasonable way.

Figure 9-1llustrates the texture—mapping process. The left side of the figure represents the entire
texture, and the black outline represents a quadrilateral shape whose corners are mapped to those
spots on the texture. When the quadrilateral is displayed on the screen, it might be distorted by
applying various transformatiofigotations, translations, scaling, and projections. The right side of
the figure shows how the texture—mapped quadrilateral might appear on your screen after these
transformations. (Note that this quadrilateral is concave and might not be rendered correctly by
OpenGL without prior tessellation. SEbapter 11for more information about tessellating polygons.)

Figure 9-1 Texture—Mapping Process

Notice how the texture is distorted to match the distortion of the quadrilateral. In this case, it's
stretched in th& direction and compressed in thdirection; there’s a bit of rotation and shearing
going on as well. Depending on the texture size, the quadrilateral’s distortion, and the size of the
screen image, some of the texels might be mapped to more than one fragment, and some fragmer
might be covered by multiple texels. Since the texture is made up of discrete texels (in this case,
256x256 of them), filtering operations must be performed to map texels to fragments. For example,
many texels correspond to a fragment, they’'re averaged down to fit; if texel boundaries fall across
fragment boundaries, a weighted average of the applicable texels is performed. Because of these
calculations, texturing is computationally expensive, which is why many specialized graphics
systems include hardware support for texture mapping.

An application may establish texture objects, with each texture object representing a single texture
(and possible associated mipmaps). Some implementations of OpenGL can support a special
working set of texture objects that have better performance than texture objects outside the workin
set. These high—performance texture objects are saiddsitbentand may have special hardware
and/or software acceleration available. You may use OpenGL to create and delete texture objects

OpenGL Programming Guide — Chapter 9, Texture Mapping — 2

to determine which textures constitute your working set.
This chapter covers the OpenGL'’s texture—mapping facility in the following major sections.

"An Overview and an Examplgives a brief, broad look at the steps required to perform texture
mapping. It also presents a relatively simple example of texture mapping.

"Specifying the Textureéxplains how to specify one— or two—dimensional textures. It also
discusses how to use a texture’s borders, how to supply a series of related textures of differen
sizes, and how to control the filtering methods used to determine how an applied texture is
mapped to screen coordinates.

"Filtering" details how textures are either magnified or minified as they are applied to the pixel:
of polygons. Minification using special mipmap textures is also explained.

"Texture Objectstiescribes how to put texture images into objects so that you can control
several textures at one time. With texture objects, you may be able to create a working set of
high—performance textures, which are said to be resident. You may also prioritize texture obje
to increase or decrease the likelihood that a texture object is resident.

"Texture Functionsdiscusses the methods used for painting a texture onto a surface. You can
choose to have the texture color values replace those that would be used if texturing wasn't in
effect, or you can have the final color be a combination of the two.

"Assigning Texture Coordinateglescribes how to compute and assign appropriate texture
coordinates to the vertices of an object. It also explains how to control the behavior of
coordinates that lie outside the default rangeat is, how to repeat or clamp textures across a
surface.

"Automatic Texture—Coordinate Generatishbws how to have OpenGL automatically generate
texture coordinates so that you can achieve such effects as contour and environment maps.

"Advanced Featuregxplains how to manipulate the texture matrix stack and how to uge the
texture coordinate.
Version 1.1 of OpenGL introduces several new texture—mapping operations:
1.
Thirty—eight additional internal texture image formats

Texture proxy, to query whether there are enough resources to accommodate a given text
image

Texture subimage, to replace all or part of an existing texture image rather than completel’
deleting and creating a texture to achieve the same effect

Specifying texture data from framebuffer memory (as well as from processor memory)

Texture objects, including resident textures and prioritizing

If you try to use one of these texture-mapping operations and can't find it, check the version numk
of your implementation of OpenGL to see if it actually supports it. (88dch Version Am |
Using?" in Chapter 1%

OpenGL Programming Guide — Chapter 9, Texture Mapping — 3

An Overview and an Example

This section gives an overview of the steps necessary to perform texture mapping. It also presents
relatively simple texture—-mapping program. Of course, you know that texture mapping can be a ve
involved process.

Steps in Texture Mapping

To use texture mapping, you perform these steps.

1. Create a texture object and specify a texture for that object.

2. Indicate how the texture is to be applied to each pixel.

3. Enable texture mapping.

4. Draw the scene, supplying both texture and geometric coordinates.

Keep in mind that texture mapping works only in RGBA mode. Texture mapping results in
color-index mode are undefined.

Create a Texture Object and Specify a Texture for That Object

A texture is usually thought of as being two—dimensional, like most images, but it can also be
one-dimensional. The data describing a texture may consist of one, two, three, or four elements p
texel, representing anything from a modulation constant to an (R, G, B, A) quadruple.

In Example 9-Iwhich is very simple, a single texture object is created to maintain a single
two—dimensional texture. This example does not find out how much memory is available. Since on
one texture is created, there is no attempt to prioritize or otherwise manage a working set of textur
objects. Other advanced techniques, such as texture borders or mipmaps, are not used in this sim
example.

Indicate How the Texture Is to Be Applied to Each Pixel

You can choose any of four possible functions for computing the final RGBA value from the
fragment color and the texture—image data. One possibility is simply to use the texture color as the
final color; this is thedecalmode, in which the texture is painted on top of the fragment, just as a
decal would be appliedEkample 9-lises decal mode.) Theplacemode, a variant of the decal

mode, is a second method. Another method is to use the textnoeltdate or scale, the fragment's
color; this technique is useful for combining the effects of lighting with texturing. Finally, a constant
color can be blended with that of the fragment, based on the texture value.

Enable Texture Mapping

You need to enable texturing before drawing your scene. Texturing is enabled or disabled using
glEnable()or gIDisable()with the symbolic constant GL_TEXTURE_1D or GL_TEXTURE_2D for
one- or two—dimensional texturing, respectively. (If both are enabled, GL_ TEXTURE_2D is the on
that is used.)

Draw the Scene, Supplying Both Texture and Geometric Coordinates

You need to indicate how the texture should be aligned relative to the fragments to which it's to be

OpenGL Programming Guide — Chapter 9, Texture Mapping - 4

applied before it's "glued on." That is, you need to specify both texture coordinates and geometric
coordinates as you specify the objects in your scene. For a two—dimensional texture map, for
example, the texture coordinates range from 0.0 to 1.0 in both directions, but the coordinates of th
items being textured can be anything. For the brick—wall example, if the wall is square and meant 1
represent one copy of the texture, the code would probably assign texture coordinates (0, 0), (1, O
(1, 1), and (0, 1) to the four corners of the wall. If the wall is large, you might want to paint several
copies of the texture map on it. If you do so, the texture map must be designed so that the bricks ¢
the left edge match up nicely with the bricks on the right edge, and similarly for the bricks on the ta
and those on the bottom.

You must also indicate how texture coordinates outside the range [0.0,1.0] should be treated. Do t
textures repeat to cover the object, or are they clamped to a boundary value?

A Sample Program

One of the problems with showing sample programs to illustrate texture mapping is that interesting
textures are large. Typically, textures are read from an image file, since specifying a texture
programmatically could take hundreds of lines of cod&ximmple 9-1the texturg which consists

of alternating white and black squares, like a checkerbb@rdenerated by the program. The

program applies this texture to two squares, which are then rendered in perspective, one of them
facing the viewer squarely and the other tilting back at 45 degrees, as sheigurén9-2In object
coordinates, both squares are the same size.

Figure 9-2 Texture—Mapped Squares

Example 9-1 Texture—Mapped Checkerboard: checker.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

I* Create checkerboard texture */
#define checklmageWidth 64

OpenGL Programming Guide — Chapter 9, Texture Mapping — 5

#define checklmageHeight 64
static GLubyte checklmage[checkimageHeight][checkimageWidth][4];

static GLuint texName;

void makeChecklimage(void)

{

inti, j, c;

for (i = 0; i < checklmageHeight; i++) {
for (j = 0; j < checklmageWidth; j++) {
¢ = ((((i&0x8)==0)"((j&0x8))==0))*255;
checklmage(i][j][0] = (GLubyte) c;
checklmage([i][j][1] = (GLubyte) c;
checkimageli][jl[2] = (GLubyte) c;
checkimage(i][j][3] = (GLubyte) 255;

void init(void)

{
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel(GL_FLAT);
glEnable(GL_DEPTH_TEST);

makeChecklmage();
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

glGenTextures(1, &texName);
glBindTexture(GL_TEXTURE_2D, texName);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_NEAREST);
glTeximage2D(GL_TEXTURE_2D, 0, GL_RGBA, checklmageWidth,
checklmageHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE,
checkimage);

void display(void)

{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnable(GL_TEXTURE_2D);

OpenGL Programming Guide — Chapter 9, Texture Mapping - 6

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
glBindTexture(GL_TEXTURE_2D, texName);

giBegin(GL_QUADS);

glTexCoord2f(0.0, 0.0); glVertex3f(-2.0, —1.0, 0.0);

glTexCoord2f(0.0, 1.0); glVertex3f(-2.0, 1.0, 0.0);

glTexCoord2f(1.0, 1.0); glVertex3f(0.0, 1.0, 0.0);

glTexCoord2f(1.0, 0.0); glVertex3f(0.0, -1.0, 0.0);

glTexCoord2f(0.0, 0.0); glVertex3f(1.0, -1.0, 0.0);

glTexCoord2f(0.0, 1.0); glVertex3f(1.0, 1.0, 0.0);

glTexCoord2f(1.0, 1.0); glVertex3f(2.41421, 1.0, —1.41421);
glTexCoord2f(1.0, 0.0); glVertex3f(2.41421, -1.0, —-1.41421);
glEnd();

glFlush();

glDisable(GL_TEXTURE_2D);

void reshape(int w, int h)
{
glViewport(0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode(GL_PROJECTION);
glLoadldentity();
gluPerspective(60.0, (GLfloat) w/(GLfloat) h, 1.0, 30.0);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();
glTranslatef(0.0, 0.0, —3.6);

void keyboard (unsigned char key, int x, int y)
{
switch (key) {
case 27:
exit(0);
break;
default:
break;

int main(int argc, char** argv)
{
glutinit(&argc, argv);
glutinitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
glutinitWindowSize (250, 250);
glutinitWindowPosition(100, 100);
glutCreateWindow(argv[0]);

OpenGL Programming Guide — Chapter 9, Texture Mapping — 7

init();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutkeyboardFunc(keyboard);
glutMainLoop();

return O;

}

The checkerboard texture is generated in the rontileeChecklmage@nd all the texture—-mapping
initialization occurs in the routiriait(). giGenTextures(andgIBindTexture()nhame and create a
texture object for a texture image. (S&exture Objects)'The single, full-resolution texture map is
specified byglTexImage2D()whose parameters indicate the size of the image, type of the image,
location of the image, and other properties of it. (Sgecifying the Texturefor more information
aboutglTeximage2D()

The four calls t@lTexParameter*(specify how the texture is to be wrapped and how the colors are
to be filtered if there isn’'t an exact match between pixels in the texture and pixels on the screen. (<
"Repeating and Clamping Textures'id"Filtering.")

In display() glEnable()turns on texturingglTexEnv*()sets the drawing mode to GL_DECAL so that
the textured polygons are drawn using the colors from the texture map (rather than taking into
account what color the polygons would have been drawn without the texture).

Then, two polygons are drawn. Note that texture coordinates are specified along with vertex
coordinates. ThglTexCoord*()command behaves similarly to thormal() command.
glTexCoord*()sets the current texture coordinates; any subsequent vertex command has those tex
coordinates associated with it urgfiTexCoord*()is called again.

Note: The checkerboard image on the tilted polygon might look wrong when you compile and run i
on your maching for example, it might look like two triangles with different projections of the
checkerboard image on them. If so, try setting the parameter
GL_PERSPECTIVE_CORRECTION_HINT to GL_NICEST and running the example again. To do
this, useglHint().

Specifying the Texture

The commandjITeximage2D(¥efines a two—dimensional texture. It takes several arguments, which
are described briefly here and in more detail in the subsections that follow. The related command 1
one-dimensional texturggTexlmagelD()is described itOne—-Dimensional Textures."

void glTeximage2iGLenuntarget, GLintlevel GLintinternalFormat
GLsizeiwidth, GLsizeiheight GLintborder,

GLenumformat, GLenuntype

const GLvoidpixels);

Defines a two—dimensional texture. Tdrget parameter is set to either the constant
GL_TEXTURE_2D or GL_PROXY_TEXTURE_2D. You usketeéparameter if you're

supplying multiple resolutions of the texture map; with only one resollgiesi,should be 0.
(See"Multiple Levels of Detail'for more information about using multiple resolutions.)

The next parameteinternalFormat indicates which of the R, G, B, and A components or
luminance or intensity values are selected for use in describing the texels of an image. The va
of internalFormatis an integer from 1 to 4, or one of thirty—eight symbolic constants. The

OpenGL Programming Guide — Chapter 9, Texture Mapping — 8

thirty—eight symbolic constants that are also legal valuemfemalFormatare GL_ALPHA,
GL_ALPHAA4, GL_ALPHAS, GL_ALPHA12, GL_ALPHA16, GL_LUMINANCE,
GL_LUMINANCE4, GL_LUMINANCES, GL_LUMINANCE12, GL_LUMINANCE1S6,
GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_LUMINANCEG6_ALPHA2,
GL_LUMINANCES8_ALPHAS, GL_LUMINANCE12_ALPHA4, GL_LUMINANCE12_ALPHA12,
GL_LUMINANCE16_ALPHA16, GL_INTENSITY, GL_INTENSITY4, GL_INTENSITYS,
GL_INTENSITY12, GL_INTENSITY16, GL_RGB, GL_R3_G3_B2, GL_RGB4, GL_RGBS5,
GL_RGBS8, GL_RGB10, GL_RGB12, GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBAA4,
GL_RGB5_Al, GL_RGBAS8, GL_RGB10_A2, GL_RGBA12, and GL_RGBA16T ¢Sere
Functions"for a discussion of how these selected components are applied.)

If internalFormatis one of the thirty—eight symbolic constants, then you are asking for specific
components and perhaps the resolution of those components. For exaimfgendlFormatis
GL_R3_G3_B2, you are asking that texels be 3 bits of red, 3 bits of green, and 2 bits of blue, |
OpenGL is not guaranteed to deliver this. OpenGL is only obligated to choose an internal
representation that closely approximates what is requested, but an exact match is usually not
required. By definition, GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, and
GL_RGBA are lenient, because they do not ask for a specific resolution. (For compatibility witt
the OpenGL release 1.0, the numeric values 1, 2, 3, andidtdanalFormat are equivalent to

the symbolic constants GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, and
GL_RGBA, respectively.)

Thewidth andheightparameters give the dimensions of the texture imaayelerindicates the
width of the border, which is either zero (no border) or one. (8simg a Texture’s Borders)'

Bothwidth andheightmust have the forn{™®2b, where m is a nonnegative integer (which can
have a different value fawidth than forheigh) and b is the value dforder. The maximum size
of a texture map depends on the implementation of OpenGL, but it must be at*édsfad4
66x66 with borders).

Theformatandtype parameters describe the format and data type of the texture image data.
They have the same meaning as they dgliamrawPixels() (Se€'Imaging Pipeline" in Chapter
8.) In fact, texture data is in the same format as the data usgliDbawPixels() so the settings
of glIPixelStore*()andglPixelTransfer*()are applied. (IrExample 9-lthe call

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
is made because the data in the example isn't padded at the end of each texel rimmdathe
parameter can be GL_COLOR_INDEX, GL_RGB, GL_RGBA, GL_RED, GL_GREEN,
GL_BLUE, GL_ALPHA, GL_LUMINANCE, or GL_LUMINANCE_ALPH#at is, the same
formats available foglDrawPixels()with the exceptions of GL_STENCIL INDEX and
GL_DEPTH_COMPONENT.

Similarly, thetype parameter can be GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT,
GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT, GL_FLOAT, or GL_BITMAP.
Finally, pixelscontains the texture—image data. This data describes the texture image itself as
well as its border.

The internal format of a texture image may affect the performance of texture operations. For
example, some implementations perform texturing with GL_RGBA faster than GL_RGB, because
the color components align the processor memory better. Since this varies, you should check spec
information about your implementation of OpenGL.

The internal format of a texture image also may control how much memory a texture image
consumes. For example, a texture of internal format GL_RGBAS8 uses 32 bhits per texel, while a

OpenGL Programming Guide — Chapter 9, Texture Mapping - 9

texture of internal format GL_R3_G3_B2 only uses 8 bits per texel. Of course, there is a
corresponding trade—off between memory consumption and color resolution.

Note: Although texture—mapping results in color-index mode are undefined, you can still specify a
texture with a GL_COLOR_INDEX image. In that case, pixel-transfer operations are applied to
convert the indices to RGBA values by table lookup before they're used to form the texture image.

The number of texels for both the width and height of a texture image, not including the optional
border, must be a power of 2. If your original image does not have dimensions that fit that limitatiol
you can use the OpenGL Utility Library routigiScalelmage(lo alter the size of your textures.

int gluScalelmag@&Lenumformat GLintwidthin, GLint heightin
GLenumtypein const void tlatain GLintwidthout
GLint heightout GLenuntypeout void *dataouy;

Scales an image using the appropriate pixel-storage modes to unpack the dattdionThe
format, typein andtypeoutparameters can refer to any of the formats or data types supported b
glDrawPixels() The image is scaled using linear interpolation and box filtering (from the size
indicated bywidthin andheightinto widthoutandheightou}, and the resulting image is written

to dataout using the pixel GL_PACK* storage modes. The callgiucalelmage(inust

allocate sufficient space for the output buffer. A value of 0 is returned on success, and a GLU
error code is returned on failure.

The framebuffer itself can also be used as a source for texturgl@aipyTeximage2D@eads a
rectangle of pixels from the framebuffer and uses it for a new texture.

void glCopyTexlmage2@Lenumtarget GLintlevel,
GLint internalFormat

GLintx, GLinty, GLsizewidth, GLsizeiheight
GLint borde);

Creates a two—dimensional texture, using framebuffer data to define the texels. The pixels are
read from the current GL_READ_BUFFER and are processed exactlgl@oipyPixels(had

been called but stopped before final conversion. The settigBigélTransfer*()are applied.
Thetargetparameter must be set to the constant GL_ TEXTURE_2DeVékinternalFormat
andborderparameters have the same effects that they hagéTfeximage2D()The texture

array is taken from a screen-aligned pixel rectangle with the lower-left corner at coordinates
specified by thex(y) parameters. Theidth andheightparameters specify the size of this pixel

rectangle. Botlwidth andheightmust have the form™+2b, where m is a nonnegative integer
(which can have a different value feidth than forheigh) and b is the value dforder.

The next sections give more detail about texturing, including the usetafgie¢ border andlevel
parameters. Thiargetparameter can be used to accurately query the size of a texture (by creating i
texture proxy withglTeximage*D() and whether a texture possibly can be used within the texture
resources of an OpenGL implementation. Redefining a portion of a texture is desctiRegdlating

All or Part of a Texture ImageOne—dimensional textures are discussé@ie—Dimensional
Textures."The texture border, which has its size controlled byotirder parameter, is detailed in
"Using a Texture’s BordersThelevel parameter is used to specify textures of different resolutions
and is incorporated into the special techniquaigimappingwhich is explained itiMultiple Levels

of Detail." Mipmapping requires understanding how to filter textures as they're applied; filtering is
the subject ofFiltering."

Texture Proxy

OpenGL Programming Guide — Chapter 9, Texture Mapping — 10

To an OpenGL programmer who uses textures, size is important. Texture resources are typically
limited and vary among OpenGL implementations. There is a special texture proxy target to evalue
whether sufficient resources are available.

glGetinteger¢yGL_MAX_TEXTURE_SIZE,...) tells you the largest dimension (width or height,
without borders) of a texture image, typically the size of the largest square texture supported.
However, GL_MAX_TEXTURE_SIZE does not consider the effect of the internal format of a
texture. A texture image that stores texels using the GL_RGBA16 internal format may be using 64
bits per texel, so its image may have to be 16 times smaller than an image with the
GL_LUMINANCE4 internal format. (Also, images requiring borders or mipmaps may further reduce
the amount of available memory.)

A special place holder, @roxy, for a texture image allows the program to query more accurately
whether OpenGL can accommodate a texture of a desired internal format. To use the proxy to que
OpenGL, calglTexlmage2D(Wwith atargetparameter of GL_PROXY_TEXTURE_2D and the
givenlevel, internalFormat, width, height, border, formahdtype (For one—dimensional textures,

use corresponding 1D routines and symbolic constants.) For a proxy, you should pass NULL as th
pointer for thepixelsarray.

To find out whether there are enough resources available for your texture, after the texture proxy
been created, query the texture state variablesgh®atTexLevelParameter*()f there aren’t

enough resources to accommodate the texture proxy, the texture state variables for width, height,
border width, and component resolutions are set to 0.

void glGetTexLevelParametgf} v(GLenuntarget, GLintlevel,
GLenumpname TYPE*paramg;

Returns inparamstexture parameter values for a specific level of detail, specifitzl/ab
targetdefines the target texture and is one of GL_TEXTURE_ 1D, GL_TEXTURE_2D,
GL_PROXY_TEXTURE_1D, or GL_PROXY_TEXTURE_2D. Accepted valyemfoeare
GL_TEXTURE_WIDTH, GL_TEXTURE_HEIGHT, GL_TEXTURE_BORDER,
GL_TEXTURE_INTERNAL_FORMAT, GL_TEXTURE_RED_SIZE,
GL_TEXTURE_GREEN_SIZE, GL_TEXTURE_BLUE_SIZE, GL_TEXTURE_ALPHA_SIZE,
GL_TEXTURE_LUMINANCE_SIZE, or GL_TEXTURE_INTENSITY_SIZE.
GL_TEXTURE_COMPONENTS is also acceptegf@mme but only for backward compatibility
with OpenGL Release TI0GL_TEXTURE_INTERNAL_FORMAT is the recommended symbolic
constant for Release 1.1.

Example 9—Bemonstrates how to use the texture proxy to find out if there are enough resources ta
create a 6464 texel texture with RGBA components with 8 bits of resolution. If this succeeds, then
glGetTexLevelParameterivgtores the internal format (in this case, GL_RGBAS) into the variable
format

Example 9-2 Querying Texture Resources with a Texture Proxy

GLint format;

glTeximage2D(GL_PROXY_TEXTURE_2D, 0, GL_RGBAS,
64, 64, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
glGetTexLevelParameteriv(GL_PROXY_TEXTURE_2D, 0,
GL_TEXTURE_INTERNAL_FORMAT, &format);

OpenGL Programming Guide — Chapter 9, Texture Mapping — 11

Note: There is one major limitation about texture proxies: The texture proxy tells you if there is
space for your texture, but only if all texture resources are available (in other words, if it's the only
texture in town). If other textures are using resources, then the texture proxy query may respond
affirmatively, but there may not be enough space to make your texture resident (that is, part of a
possibly high—performance working set of textures). {(Bexture Objectsfor more information

about managing resident textures.)

Replacing All or Part of a Texture Image

Creating a texture may be more computationally expensive than modifying an existing one. In
OpenGL Release 1.1, there are new routines to replace all or part of a texture image with new
information. This can be helpful for certain applications, such as using real-time, captured video
images as texture images. For that application, it makes sense to create a single texture and use
glTexSublmage2D¢p repeatedly replace the texture data with new video images. Also, there are n
size restrictions foglTexSublmage2Dghat force the height or width to be a power of two. This is
helpful for processing video images, which generally do not have sizes that are powers of two.

void glTexSubimage2iGLenuntarget, GLintlevel GLintxoffset
GLint yoffset GLsizewidth, GLsizeiheight
GLenunformat, GLenuntype const GLvoidpixels);

Defines a two—dimensional texture image that replaces all or part of a contiguous subregion (ii
2D, it's simply a rectangle) of the current, existing two—dimensional texture imagergéte
parameter must be set to GL_TEXTURE_2D.

Theleve| format, andtypeparameters are similar to the ones usedgidieximage2D()levelis

the mipmap level-of-detail number. It is not an error to specify a width or height of zero, but tr
subimage will have no effeébrmatandtypedescribe the format and data type of the texture
image data. The subimage is also affected by modes giRikglIStore*()and

glPixelTransfer*()

pixelscontains the texture data for the subimagglth andheightare the dimensions of the
subregion that is replacing all or part of the current texture imagésetandyoffsetspecify the
texel offset in the& andy directions (with (0, 0) at the lower-left corner of the texture) and
specify where to put the subimage within the existing texture array. This region may not includ
any texels outside the range of the originally defined texture array.

In Example 9-3ome of the code froixample 9—has been modified so that pressing the ‘s’ key
drops a smaller checkered subimage into the existing image. (The resulting texture is sfigurin
9-3) Pressing the ‘r’ key restores the original imageample 9—-8hows the two routines,
makeChecklimageséndkeyboard() that have been substantially changed. ($e&ture Objects"”

for more information abowIBindTexture()

OpenGL Programming Guide — Chapter 9, Texture Mapping — 12

Figure 9-3 Texture with Subimage Added

Example 9-3 Replacing a Texture Subimage: texsub.c

/* Create checkerboard textures */

#define checkimageWidth 64

#define checkimageHeight 64

#define sublmageWidth 16

#define sublmageHeight 16

static GLubyte checkimage[checkimageHeight][checklmageWidth][4];
static GLubyte sublmage[sublmageHeight][sublmageWidth][4];

void makeCheckimages(void)

{

inti, j, c;

for (i = 0; i < checklmageHeight; i++) {
for (j = 0; j < checklmageWidth; j++) {
¢ = ((((i&0x8)==0)"((j&0x8))==0))*255;
checklmage[i][jl[0] = (GLubyte) c;
checkimage[i][jl[1] = (GLubyte) c;
checklmage[i][jl[2] = (GLubyte) c;
checklmagel[i][jl[3] = (GLubyte) 255;
}
}
for (i = 0; i < sublmageHeight; i++) {
for (j = 0; j < sublmageWidth; j++) {
¢ = ((((i&0x4)==0)"((j&0x4))==0))*255;
sublmageli][j][0] = (GLubyte) c;
sublmageli][jl[1] = (GLubyte) 0;
sublmageli][jl[2] = (GLubyte) 0;
sublmageli][j][3] = (GLubyte) 255;

——

void keyboard (unsigned char key, int x, int y)

OpenGL Programming Guide — Chapter 9, Texture Mapping — 13

{
switch (key) {

case's”.
case ‘S’
glBindTexture(GL_TEXTURE_2D, texName);
glTexSublmage2D(GL_TEXTURE_2D, 0, 12, 44,
sublmageWidth, subimageHeight, GL_RGBA,
GL_UNSIGNED_BYTE, sublmage);
glutPostRedisplay();
break;
case 'r’
case ‘R
glBindTexture(GL_TEXTURE_2D, texName);
glTeximage2D(GL_TEXTURE_2D, 0, GL_RGBA,
checklmageWidth, checkimageHeight, 0,
GL_RGBA, GL_UNSIGNED_BYTE, checklmage);
glutPostRedisplay();
break;
case 27:
exit(0);
break;
default:
break;

}
}

Once again, the framebuffer itself can be used as a source for texture data; this time, a texture
subimageglCopyTexSubimage2D(gads a rectangle of pixels from the framebuffer and replaces a
portion of an existing texture arraglCopyTexSublmage2Di§ kind of a cross between
glCopyTeximage2D@ndglTexSublmage2DJ)

void glCopyTexSubimage2BLenumtarget GLintlevel,
GLint xoffset GLintyoffsef GLintx, GLinty,
GLsizeiwidth, GLsizeiheigh);

Uses image data from the framebuffer to replace all or part of a contiguous subregion of the
current, existing two—dimensional texture image. The pixels are read from the current
GL_READ_BUFFER and are processed exactly g&kdbpyPixels(had been called, stopping
before final conversion. The settinggytPixelStore*()andglPixelTransfer*()are applied.
Thetargetparameter must be set to GL_TEXTURE_[®elis the mipmap level-of-detail
number.xoffsetandyoffsetspecify the texel offset in the x and y directions (with (0, 0) at the
lower-left corner of the texture) and specify where to put the subimage within the existing text
array. The subimage texture array is taken from a screen-aligned pixel rectangle with the
lower-left corner at coordinates specified by thg)(parameters. Thwidth andheight

parameters specify the size of this subimage rectangle.

One-Dimensional Textures

Sometimes a one-dimensional texture is sufficiémt example, if you're drawing textured bands

OpenGL Programming Guide — Chapter 9, Texture Mapping — 14

where all the variation is in one direction. A one-dimensional texture behaves like a two—-dimensio
one withheight= 1, and without borders along the top and bottom. All the two—-dimensional texture
and subtexture definition routines have corresponding one—dimensional routines. To create a simf
one—dimensional texture, ug@&@eximagelD()

void glTeximagelGLenuntarget, GLintlevel GLintinternalFormat

GLsizeiwidth, GLint border, GLenunformat,
GLenuntype, const GLvoidpixels);

Defines a one-dimensional texture. All the parameters have the same meanings as for
glTeximage2D()except that the image is now a one—dimensional array of texels. As before, the

value ofwidth is 21 (or 242, if there’s a border), where m is a nonnegative integer. You can
supply mipmaps, proxies (dargetto GL_PROXY_TEXTURE_1D), and the same filtering
options are available as well.

For a sample program that uses a one—dimensional texture mBEpasgse 9-6
To replace all or some of the texels of a one—dimensional textugdTag8ublmage1D()

void glTexSublmagel@Lenuntarget, GLintlevel GLint xoffset
GLsizeiwidth, GLenunmformat,
GLenuntype, const GLvoidpixels);

Defines a one-dimensional texture array that replaces all or part of a contiguous subregion (in
1D, a row) of the current, existing one—dimensional texture imageaijetparameter must be
setto GL_TEXTURE_1D.

Theleve| format, andtypeparameters are similar to the ones useddidieximagelD()levelis

the mipmap level-of-detail numbiermatandtype describe the format and data type of the
texture image data. The subimage is also affected by modesgtieideyStore*()or
glPixelTransfer*()

pixelscontains the texture data for the subimagdthis the number of texels that replace part or all
of the current texture imageoffsetspecifies the texel offset for where to put the subimage within the
existing texture array.

To use the framebuffer as the source of a new or replacement for an old one-dimensional texture,
eitherglCopyTeximagelD@r glCopyTexSublmagelD()
void glCopyTexlmagel@Lenumtarget GLintlevel,

GLintinternalFormat GLintx, GLinty,
GLsizeiwidth, GLintborde);

Creates a one—dimensional texture, using framebuffer data to define the texels. The pixels are
read from the current GL_READ_BUFFER and are processed exactlgl@oipyPixels(had

been called but stopped before final conversion. The settiggBigélStore*()and
glPixelTransfer*()are applied.

Thetargetparameter must be set to the constant GL_TEXTURE_1DeVékinternalFormat

and borderparameters have the same effects that they hagéJopyTeximage2D()rhe

texture array is taken from a row of pixels with the lower-left corner at coordinates specified by
the & y) parameters. Theidth parameter specifies the number of pixels in this row. The value

of width is 21 (or 2™+2 if there’s a border), where m is a nonnegative integer.

void glCopyTexSublmagelBGLenumtarget GLintlevel GLint xoffset
GLint x, GLinty, GLsizewidth);

Uses image data from the framebuffer to replace all or part of a contiguous subregion of the
current, existing one—dimensional texture image. The pixels are read from the current

OpenGL Programming Guide — Chapter 9, Texture Mapping — 15

GL_READ_BUFFER and are processed exactly g&kdbpyPixels(had been called but stopped
before final conversion. The settingpifPixelStore*()andglPixelTransfer*()are applied.
Thetargetparameter must be set to GL_TEXTURE_[EDelis the mipmap level-of-detail
number xoffsetspecifies the texel offset and specifies where to put the subimage within the
existing texture array. The subimage texture array is taken from a row of pixels with the
lower-left corner at coordinates specified by theg)(parameters. Thevidth parameter specifies
the number of pixels in this row.

Using a Texture’s Borders
Advanced

If you need to apply a larger texture map than your implementation of OpenGL allows, you can, wi
a little care, effectively make larger textures by tiling with several different textures. For example, if
you need a texture twice as large as the maximum allowed size mapped to a square, draw the sqL
as four subsquares, and load a different texture before drawing each piece.

Since only a single texture map is available at one time, this approach might lead to problems at tt
edges of the textures, especially if some form of linear filtering is enabled. The texture value to be
used for pixels at the edges must be averaged with something beyond the edge, which, ideally, sh
come from the adjacent texture map. If you define a border for each texture whose texel values art
equal to the values of the texels on the edge of the adjacent texture map, then the correct behavio
results when linear filtering takes place.

To do this correctly, notice that each map can have eight neighboesadjacent to each edge, and
one touching each corner. The values of the texels in the corner of the border need to correspond
the texels in the texture maps that touch the corners. If your texture is an edge or corner of the whi
tiling, you need to decide what values would be reasonable to put in the borders. The easiest
reasonable thing to do is to copy the value of the adjacent texel in the texture map. Remember tha
the border values need to be supplied at the same time as the texture—image data, so you need to
figure this out ahead of time.

A texture’s border color is also used if the texture is applied in such a way that it only partially cove
a primitive. (Se€Repeating and Clamping Texturdst more information about this situation.)

Multiple Levels of Detail
Advanced

Textured objects can be viewed, like any other objects in a scene, at different distances from the
viewpoint. In a dynamic scene, as a textured object moves farther from the viewpoint, the texture
map must decrease in size along with the size of the projected image. To accomplish this, OpenGl
has to filter the texture map down to an appropriate size for mapping onto the object, without
introducing visually disturbing artifacts. For example, to render a brick wall, you may use a large (s
128x128 texel) texture image when it is close to the viewer. But if the wall is moved farther away
from the viewer until it appears on the screen as a single pixel, then the filtered textures may appe
to change abruptly at certain transition points.

To avoid such artifacts, you can specify a series of prefiltered texture maps of decreasing resolutic
calledmipmapsas shown irfFigure 9-4The termmipmapwas coined by Lance Williams, when he
introduced the idea in his papePyramidal Parametrics(SIGGRAPH 1983 Proceeding8)iip

OpenGL Programming Guide — Chapter 9, Texture Mapping — 16

stands for the Latimultim im parvo meaning "many things in a small place." Mipmapping uses
some clever methods to pack image data into memory.

Onginal Texture

Pre-Filtered Images

1.4

1486

1/84

W1 pixel

When using mipmapping, OpenGL automatically determines which texture map to use based on tt
size (in pixels) of the object being mapped. With this approach, the level of detail in the texture ma

Figure 9-4 Mipmaps

is appropriate for the image that's drawn on the sc¢tesenthe image of the object gets smaller, the
size of the texture map decreases. Mipmapping requires some extra computation and texture stor:
area; however, when it's not used, textures that are mapped onto smaller objects might shimmer a
flash as the objects move.

To use mipmapping, you must provide all sizes of your texture in powers of 2 between the largest
size and a2l map. For example, if your highest-resolution map34®&4you must also provide

maps of size 3B, 16x4, 8x2, 4x1, 2x1, and k1. The smaller maps are typically filtered and
averaged—down versions of the largest map in which each texel in a smaller texture is an average
the corresponding four texels in the larger texture. (Since OpenGL doesn't require any particular
method for calculating the smaller maps, the differently sized textures could be totally unrelated. Ir
practice, unrelated textures would make the transitions between mipmaps extremely noticeable.)

To specify these textures, cglifeximage2D(pnce for each resolution of the texture map, with
different values for th&evel width, height andimageparameters. Starting with zeteyelidentifies
which texture in the series is specified; with the previous example, the largest texture okstze 64
would be declared witlevel= 0, the 328 texture withevel= 1, and so on. In addition, for the
mipmapped textures to take effect, you need to choose one of the appropriate filtering methods
described in the next section.

Example 9-#lustrates the use of a series of six texture maps decreasing in size #8eht82x1.

This program draws a rectangle that extends from the foreground far back in the distance, eventug
disappearing at a point, as showriftlate 20" in Appendix. INote that the texture coordinates range
from 0.0 to 8.0 so 64 copies of the texture map are required to tile the rectangle, eight in each
direction. To illustrate how one texture map succeeds another, each map has a different color.

Example 9-4 Mipmap Textures: mipmap.c

#include <GL/gl.h>

OpenGL Programming Guide — Chapter 9, Texture Mapping — 17

#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>

GLubyte mipmaplmage32[32][32][4];
GLubyte mipmaplmage16[16][16][4];
GLubyte mipmaplmage8[8][8][4];
GLubyte mipmaplmage4[4][4][4];
GLubyte mipmapimage2[2][2][4];
GLubyte mipmaplmage1[1][1][4];

static GLuint texName;

void makelmages(void)

{

inti, j;

for (i=0;i<32;i++){
for j=0;j<32; j++){
mipmaplimage32[i][j][0] = 255;
mipmaplimage32[i][j][1] = 255;
mipmaplmage32[i][jl[2] = O;
mipmaplimage32[i][j][3] = 255;
}
}
for (i=0;i<16;i++){
for (j=0;j<16; j++){
mipmaplmagel6[i][j][0] = 255;
mipmaplmage16][i][j][1] = O;
mipmaplimagel6[i][jl[2] = 255;
mipmaplimagel6[i][j][3] = 255;
}
}
for(i=0;i<8;i++){
for (j=0;j<8;j++){
mipmapIimage8[i][j][0] = 255;
mipmaplimage8[i][j][1] = O;
mipmaplimage8[i][jl[2] = O;
mipmapIimage8[i][j][3] = 255;
}
}
for(i=0;i<4;i++){
for (j=0;j<4;j++){
mipmaplimage4|i][j][0] = O;
mipmaplimage4][i][j][1] = 255;
mipmaplimage4|[i][jl[2] = O;

OpenGL Programming Guide — Chapter 9, Texture Mapping — 18

mipmapIimage4|[i][jl[3] = 255;
}
}
for(i=0;i<2;i++){
for (j=0;j<2;j++){
mipmaplmage?2[i][j][0] = O;
mipmaplmage2[i][jl[1] = O;
mipmaplimage?2[i][j][2] = 255;
mipmapIimage2[i][jl[3] = 255;
}
}
mipmaplimagel1[0][0][0] = 255;
mipmaplimagel[0][0][1] = 255;
mipmaplimagel1[0][0][2] = 255;
mipmaplimagel[0][0][3] = 255;

void init(void)

{
glEnable(GL_DEPTH_TEST);
glShadeModel(GL_FLAT);

glTranslatef(0.0, 0.0, —3.6);
makelmages();
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

glGenTextures(l, &texName);
giBindTexture(GL_TEXTURE_2D, texName);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_NEAREST_MIPMAP_NEAREST);

glTeximage2D(GL_TEXTURE_2D, 0, GL_RGBA, 32, 32, 0,

GL_RGBA, GL_UNSIGNED_BYTE, mipmaplmage32);
glTeximage2D(GL_TEXTURE_2D, 1, GL_RGBA, 16, 16, 0,

GL_RGBA, GL_UNSIGNED_BYTE, mipmaplmage16);
glTeximage2D(GL_TEXTURE_2D, 2, GL_RGBA, 8, 8, 0,

GL_RGBA, GL_UNSIGNED_BYTE, mipmaplmage8);
glTeximage2D(GL_TEXTURE_2D, 3, GL_RGBA, 4, 4, 0,

GL_RGBA, GL_UNSIGNED_BYTE, mipmaplmage4);
glTeximage2D(GL_TEXTURE_2D, 4, GL_RGBA, 2, 2, 0,

GL_RGBA, GL_UNSIGNED_BYTE, mipmaplmage?2);
glTeximage2D(GL_TEXTURE_2D, 5, GL_RGBA, 1, 1, 0,

GL_RGBA, GL_UNSIGNED_BYTE, mipmaplimagel);

OpenGL Programming Guide — Chapter 9, Texture Mapping — 19

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
glEnable(GL_TEXTURE_2D);

}

void display(void)

{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glBindTexture(GL_TEXTURE_2D, texName);
giBegin(GL_QUADS);
glTexCoord2f(0.0, 0.0); glVertex3f(-2.0, —1.0, 0.0);
glTexCoord2f(0.0, 8.0); glVertex3f(-2.0, 1.0, 0.0);
glTexCoord2f(8.0, 8.0); glVertex3f(2000.0, 1.0, —-6000.0);
glTexCoord2f(8.0, 0.0); glVertex3f(2000.0, -1.0, -6000.0);
glEnd();
glFlush();

void reshape(int w, int h)

{
glViewport(0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode(GL_PROJECTION);
glLoadldentity();
gluPerspective(60.0, (GLfloat)w/(GLfloat)h, 1.0, 30000.0);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();

void keyboard (unsigned char key, int x, int y)
{
switch (key) {
case 27:
exit(0);
break;
default:
break;

int main(int argc, char** argv)
{
glutlnit(&argc, argv);
glutinitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
glutinitWindowSize (500, 500);
glutinitWindowPosition(50, 50);
glutCreateWindow(argv[0]);
init();

OpenGL Programming Guide — Chapter 9, Texture Mapping — 20

glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutkeyboardFunc(keyboard);
glutMainLoop();

return O;

}

Example 9—4#llustrates mipmapping by making each mipmap a different color so that it's obvious
when one map is replaced by another. In a real situation, you define mipmaps so that the transitior
as smooth as possible. Thus, the maps of lower resolution are usually filtered versions of an origin
high-resolution map. The construction of a series of such mipmaps is a software process, and thu
isn't part of OpenGL, which is simply a rendering library. However, since mipmap construction is
such an important operation, however, the OpenGL Ultility Library contains two routines that aid in
the manipulation of images to be used as mipmapped textures.

Assuming you have constructed the level 0, or highest-resolution map, the routines
gluBuild1DMipmaps(andgluBuild2DMipmaps(onstruct and define the pyramid of mipmaps
down to a resolution of £ 1 (or 1, for one—dimensional texture maps). If your original image has
dimensions that are not exact powers afl@Build*DMipmaps()helpfully scales the image to the
nearest power of 2.

int gluBuild1DMipmapéGLenuntarget GLintcomponentsGLintwidth,
GLenumformat, GLenuntype void *data);

int gluBuild2DMipmap§&GLenuntarget GLintcomponentsGLintwidth,
GLint height GLenunformat GLenumtype

void *data);

Constructs a series of mipmaps and cgliBeximage*) to load the images. The parameters
for target componentswidth, height format, type anddataare exactly the same as those for
glTeximagelD(andglTeximage2D()A value of 0 is returned if all the mipmaps are
constructed successfully; otherwise, a GLU error code is returned.

Filtering

Texture maps are square or rectangular, but after being mapped to a polygon or surface and
transformed into screen coordinates, the individual texels of a texture rarely correspond to individu
pixels of the final screen image. Depending on the transformations used and the texture mapping
applied, a single pixel on the screen can correspond to anything from a tiny portion of a texel
(magnification) to a large collection of texels (minification), as shoviigaore 9-5In either case,

it's unclear exactly which texel values should be used and how they should be averaged or
interpolated. Consequently, OpenGL allows you to specify any of several filtering options to
determine these calculations. The options provide different trade—offs between speed and image
quality. Also, you can specify independently the filtering methods for magnification and
minification.

OpenGL Programming Guide — Chapter 9, Texture Mapping — 21

'\‘.l

x’p“rﬂf%

n—'-''- = _‘-—__
L

7H ~_ pixu!é"'“

texal

Taxture Polygon Texture Polygon
Magnification Minificalion
Figure 9-5 Texture Magnification and Minification

In some cases, it isn't obvious whether magnification or minification is called for. If the mipmap
needs to be stretched (or shrunk) in bothxtbady directions, then magnification (or minification) is
needed. If the mipmap needs to be stretched in one direction and shrunk in the other, OpenGL ma
a choice between magnification and minification that in most cases gives the best result possible. |
best to try to avoid these situations by using texture coordinates that map without such distortion.
(See"Computing Appropriate Texture Coordinatgs."

The following lines are examples of how to géEexParameter*(Xo specify the magnification and
minification filtering methods:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_NEAREST);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_NEAREST);

The first argument tgiTexParameter*()js either GL_ TEXTURE_2D or GL_TEXTURE_1D,
depending on whether you're working with two— or one-dimensional textures. For the purposes of
discussion, the second argument is either GL_ TEXTURE_MAG_FILTER or
GL_TEXTURE_MIN_FILTER to indicate whether you're specifying the filtering method for
magnification or minification. The third argument specifies the filtering mefthakle 9-1ists the
possible values.

Parameter Values
GL_TEXTURE_MAG_FILTER GL_NEAREST or GL_LINEAR
GL_TEXTURE_MIN_FILTER GL_NEAREST, GL_LINEAR,

GL_NEAREST_MIPMAP_NEAREST,
GL_NEAREST_MIPMAP_LINEAR,
GL_LINEAR_MIPMAP_NEAREST, or
GL_LINEAR_MIPMAP_LINEAR

Table 9-1Filtering Methods for Magnification and Minification

If you choose GL_NEAREST, the texel with coordinates nearest the center of the pixel is used for
both magnification and minification. This can result in aliasing artifacts (sometimes severe). If you
choose GL_LINEAR, a weighted linear average of tk2 &ray of texels that lie nearest to the

center of the pixel is used, again for both magnification and minification. When the texture
coordinates are near the edge of the texture map, the nedtestay of texels might include some
that are outside the texture map. In these cases, the texel values used depend on whether
GL_REPEAT or GL_CLAMP is in effect and whether you've assigned a border for the texture. (Se:
"Using a Texture’s Border9.GL_NEAREST requires less computation than GL_LINEAR and
therefore might execute more quickly, but GL_LINEAR provides smoother results.

OpenGL Programming Guide — Chapter 9, Texture Mapping — 22

With magnification, even if you've supplied mipmaps, the largest texture g% 0) is always

used. With minification, you can choose a filtering method that uses the most appropriate one or tv
mipmaps, as described in the next paragraph. (If GL_NEAREST or GL_LINEAR is specified with
minification, the largest texture map is used.)

As shown inTable 9-1four additional filtering choices are available when minifying with mipmaps.
Within an individual mipmap, you can choose the nearest texel value with
GL_NEAREST_MIPMAP_NEAREST, or you can interpolate linearly by specifying
GL_LINEAR_MIPMAP_NEAREST. Using the nearest texels is faster but yields less desirable
results. The particular mipmap chosen is a function of the amount of minification required, and
there’s a cutoff point from the use of one particular mipmap to the next. To avoid a sudden transitic
use GL_NEAREST_MIPMAP_LINEAR or GL_LINEAR_MIPMAP_LINEAR to linearly

interpolate texel values from the two nearest best choices of mipmaps.
GL_NEAREST_MIPMAP_LINEAR selects the nearest texel in each of the two maps and then
interpolates linearly between these two values. GL_LINEAR_MIPMAP_LINEAR uses linear
interpolation to compute the value in each of two maps and then interpolates linearly between thes
two values. As you might expect, GL_LINEAR_MIPMAP_LINEAR generally produces the
smoothest results, but it requires the most computation and therefore might be the slowest.

Texture Objects

Texture objects are an important new feature in release 1.1 of OpenGL. A texture object stores
texture data and makes it readily available. You can now control many textures and go back to
textures that have been previously loaded into your texture resources. Using texture objects is usu
the fastest way to apply textures, resulting in big performance gains, because it is almost always
much faster to bind (reuse) an existing texture object than it is to reload a texture image using
glTeximage*D()

Also, some implementations support a limiteal king set of high—performance textures. You can
use texture objects to load your most often used textures into this limited area.

To use texture objects for your texture data, take these steps.
1. Generate texture names.

2. Initially bind (create) texture objects to texture data, including the image arrays and texture
properties.

3. If your implementation supports a working set of high—performance textures, see if you have
enough space for all your texture objects. If there isn’t enough space, you may wish to establis
priorities for each texture object so that more often used textures stay in the working set.

4. Bind and rebind texture objects, making their data currently available for rendering textured
models.

Naming A Texture Object

Any nonzero unsigned integer may be used as a texture name. To avoid accidentally reusing nam
consistently usglGenTextures(Jo provide unused texture names.

void glGenTexturedSLsizein, GLuint*textureNameg
Returnsn currently unused names for texture objects in the aestyireNamesThe names

OpenGL Programming Guide — Chapter 9, Texture Mapping — 23

returned intextureNameslo not have to be a contiguous set of integers.

The names itextureNamesare marked as used, but they acquire texture state and
dimensionality (1D or 2D) only when they are first bound.

Zero is a reserved texture name and is never returned as a texture ngitsebyextures()

glisTexture()determines if a texture name is actually in use. If a texture name was returned by
glGenTextures(put has not yet been bound (callgiBindTexture(with the name at least once),
thenglisTexture(xeturns GL_FALSE.

GLbooleanglisTextur€GLuinttextureNampg
Returns GL_TRUE ikextureNamés the name of a texture that has been bound and has not beel
subsequently deleted. Returns GL_FALSBExfureNameés zero ontextureNames a nonzero
value that is not the name of an existing texture.

Creating and Using Texture Objects

The same routinglBindTexture() both creates and uses texture objects. When a texture name is
initially bound (used withgIBindTexture() a new texture object is created with default values for the
texture image and texture properties. Subsequent cgli$aezimage*() giTexSublmage*()
glCopyTeximage*()glCopyTexSublmage*(@ITexParameter*() andglPrioritize Textures(store

data in the texture object. The texture object may contain a texture image and associated mipmap
images (if any), including associated data such as width, height, border width, internal format,
resolution of components, and texture properties. Saved texture properties include minification anc
magnification filters, wrapping modes, border color, and texture priority.

When a texture object is subsequently bound once again, its data becomes the current texture sta
(The state of the previously bound texture is replaced.)

void gIBindTexturéGLenuntarget GLuinttextureNamg
giBindTexture()does three things. When usiegtureNamef an unsigned integer other than
zero for the first time, a new texture object is created and assigned that name. When binding t
previously created texture object, that texture object becomes active. When binding to a
textureNamevalue of zero, OpenGL stops using texture objects and returns to the unnamed
default texture.
When a texture object is initially bound (that is, created), it assumes the dimensioraligetf
which is either GL_TEXTURE_1D or GL_TEXTURE_2D. Immediately upon its initial binding,
the state of texture object is equivalent to the state of the default GL_ TEXTURE_1D or
GL_TEXTURE_2D (depending upon its dimensionality) at the initialization of OpenGL. In this
initial state, texture properties such as minification and magnification filters, wrapping modes,
border color, and texture priority are set to their default values.

In Example 9-8wo texture objects are createdriit(). In display() each texture object is used to
render a different four—sided polygon.

Example 9-5 Binding Texture Objects: texbind.c

#define checklmageWidth 64
#define checkimageHeight 64
static GLubyte checklmage[checkimageHeight][checkimageWidth][4];
static GLubyte otherlmage[checkimageHeight][checkimageWidth][4];

OpenGL Programming Guide — Chapter 9, Texture Mapping — 24

static GLuint texName[2];

void makeChecklmages(void)

{

inti, j, c;

for (i = 0; i < checklmageHeight; i++) {

for (j = O; j < checkimageWidth; j++) {
¢ = ((((i&0x8)==0)"((j&0x8))==0))*255;
checklmage(i][j][0] = (GLubyte) c;
checkimageli][jl[1] = (GLubyte) c;
checklmage(i][j][2] = (GLubyte) c;
checkimage(i][jl[3] = (GLubyte) 255;
¢ = ((((i&0x10)==0)"((j&0x10))==0))*255;
otherlmageli][j][0] = (GLubyte) c;
otherimageli][j][1] = (GLubyte) 0;
otherimageli][jl[2] = (GLubyte) 0;
otherimageli][j][3] = (GLubyte) 255;

void init(void)

{
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel(GL_FLAT);
glEnable(GL_DEPTH_TEST);

makeChecklmages();
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

glGenTextures(2, texName);
glBindTexture(GL_TEXTURE_2D, texName][0]);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_NEAREST);
glTeximage2D(GL_TEXTURE_2D, 0, GL_RGBA, checkimageWidth,
checklmageHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE,
checkimage);

giBindTexture(GL_TEXTURE_2D, texName[1]);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,

OpenGL Programming Guide — Chapter 9, Texture Mapping — 25

GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_NEAREST);
gITexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
glTeximage2D(GL_TEXTURE_2D, 0, GL_RGBA, checkimageWidth,
checkimageHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE,
otherimage);
glEnable(GL_TEXTURE_2D);

}

void display(void)

{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
giBindTexture(GL_TEXTURE_2D, texName[0]);
giBegin(GL_QUADS);
glTexCoord2f(0.0, 0.0); glVertex3f(-2.0, —1.0, 0.0);
glTexCoord2f(0.0, 1.0); glVertex3f(-2.0, 1.0, 0.0);
glTexCoord2f(1.0, 1.0); glVertex3f(0.0, 1.0, 0.0);
glTexCoord2f(1.0, 0.0); glVertex3f(0.0, -1.0, 0.0);
glEnd();
giBindTexture(GL_TEXTURE_2D, texName[1]);
glBegin(GL_QUADYS);
glTexCoord2f(0.0, 0.0); glVertex3f(1.0, -1.0, 0.0);
glTexCoord2f(0.0, 1.0); glVertex3f(1.0, 1.0, 0.0);
glTexCoord2f(1.0, 1.0); glVertex3f(2.41421, 1.0, —1.41421);
glTexCoord2f(1.0, 0.0); glVertex3f(2.41421, -1.0, —1.41421);
glEnd();
glFlush();

}

Whenever a texture object is bound once again, you may edit the contents of the bound texture ok
Any commands you call that change the texture image or other properties change the contents of
currently bound texture object as well as the current texture state.

In Example 9-5after completion oflisplay() you are still bound to the texture named by the
contents otexName[1] Be careful that you don't call a spurious texture routine that changes the dal
in that texture object.

When using mipmaps, all related mipmaps of a single texture image must be put into a single textt
object. InExample 9-4levels 0-5 of a mipmapped texture image are put into a single texture object
namedexName

Cleaning Up Texture Objects

As you bind and unbind texture objects, their data still sits around somewhere among your texture
resources. If texture resources are limited, deleting textures may be one way to free up resources.

void glDelete Texturg§Lsizein, const GLuinttextureNameyg
Deletes texture objects, named by elements in the ateatureNamesThe freed texture names

OpenGL Programming Guide — Chapter 9, Texture Mapping — 26

may now be reused (for example gb$enTextures])

If a texture that is currently bound is deleted, the binding reverts to the default texture, as if
giBindTexture(were called with zero for the valuetektureNameAttempts to delete

nonexistent texture names or the texture name of zero are ignored without generating an error

A Working Set of Resident Textures

Some OpenGL implementations support a working set of high—performance textures, which are se
to be resident. Typically, these implementations have specialized hardware to perform texture
operations and a limited hardware cache to store texture images. In this case, using texture object
recommended, because you are able to load many textures into the working set and then control
them.

If all the textures required by the application exceed the size of the cache, some textures cannot b
resident. If you want to find out if a single texture is currently resident, bind its object, and then use
glGetTexParameter*v(jo find out the value associated with the GL_TEXTURE_RESIDENT state.
If you want to know about the texture residence status of many texturegArsEexturesResident()

GLbooleanglAreTexturesResidg@Lsizein, const
GLuinttextureNamesGLbooleartresidence}

Queries the texture residence status ofrthexture objects, named in the art@xtureNames
residencess an array in which texture residence status is returned for the corresponding textur
objects in the arrayextureNamedf all the named textures textureNameare resident, the
glAreTexturesResident{jinction returns GL_TRUE, and the contents of the aeailences

are undisturbed. If any texture taxtureNamess not resident, theglAreTexturesResident()
returns GL_FALSE and the elementsésidenceswhich correspond to nonresident texture
objects intextureNamesare also set to GL_FALSE.

Note thaiglAreTexturesResident@turns the current residence status. Texture resources are very
dynamic, and texture residence status may change at any time. Some implementations cache text
when they are first used. It may be necessary to draw with the texture before checking residency.

If your OpenGL implementation does not establish a working set of high—performance textures, the
the texture objects are always considered resident. In thapt&ssTexturesResidentglways
returns GL_TRUE and basically provides no information.

Texture Residence Strategies

If you can create a working set of textures and want to get the best texture performance possible,
really have to know the specifics of your implementation and application. For example, with a visus
simulation or video game, you have to maintain performance in all situations. In that case, you sha
never access a honresident texture. For these applications, you want to load up all your textures u
initialization and make them all resident. If you don’'t have enough texture memory available, you
may need to reduce the size, resolution, and levels of mipmaps for your texture images, or you mg
useglTexSublmage*(Jo repeatedly reuse the same texture memory.

For applications that create textures "on the fly," nonresident textures may be unavoidable. If some
textures are used more frequently than others, you may assign a higher priority to those texture
objects to increase their likelihood of being resident. Deleting texture objects also frees up space.
Short of that, assigning a lower priority to a texture object may make it first in line for being moved
out of the working set, as resources dwinglBrioritize Textures()s used to assign priorities to

OpenGL Programming Guide — Chapter 9, Texture Mapping — 27

texture objects.

void glPrioritizeTexture§GLsizein, const GLuinttextureNames
const GLclampfpriorities);

Assigns then texture objects, named in the arr@xtureNameghe texture residence priorities

in the corresponding elements of the arpaprities. The priority values in the arragriorities

are clamped to the range [0.0, 1.0] before being assigned. Zero indicates the lowest priority;
these textures are least likely to be resident. One indicates the highest priority.

glPrioritize Textures(Hoes not require that any of the textureteixtureNamebe bound.
However, the priority might not have any effect on a texture object until it is initially bound.

glTexParameter*(Jalso may be used to set a single texture’s priority, but only if the texture is
currently bound. In fact, use gfTexParameter*(js the only way to set the priority of a default
texture.

If texture objects have equal priority, typical implementations of OpenGL apply a least recently use
(LRU) strategy to decide which texture objects to move out of the working set. If you know that you
OpenGL implementation has this behavior, then having equal priorities for all texture objects creat
a reasonable LRU system for reallocating texture resources.

If your implementation of OpenGL doesn’t use an LRU strategy for texture objects of equal priority
(or if you don’t know how it decides), you can implement your own LRU strategy by carefully
maintaining the texture object priorities. When a texture is used (bound), you can maximize its
priority, which reflects its recent use. Then, at regular (time) intervals, you can degrade the prioritie
of all texture objects.

Note: Fragmentation of texture memory can be a problem, especially if you're deleting and creatin
lots of new textures. Although it is even possible that you can load all the texture objects into a
working set by binding them in one sequence, binding them in a different sequence may leave son
textures nonresident.

Texture Functions

In all the examples so far in this chapter, the values in the texture map have been used directly as

colors to be painted on the surface being rendered. You can also use the values in the texture ma|

modulate the color that the surface would be rendered without texturing, or to blend the color in the

texture map with the original color of the surface. You choose one of four texturing functions by

supplying the appropriate argumentgbexEnv*()

void gITexEn¥if}(GLenumtarget GLenunpname TYPEaranj;

void gITexEnyif} GLenumtarget, GLenumpnameTYPE*paranj;
Sets the current texturing functicargetmust be GL_TEXTURE_ENVpHameis
GL_TEXTURE_ENV_MODmparamcan be GL_DECAL, GL_REPLACE, GL_MODULATE, or
GL_BLEND, to specify how texture values are to be combined with the color values of the
fragment being processed piiameis GL_TEXTURE_ENV_COLOParamis an array of four
floating—point values representing R, G, B, and A components. These values are used only if t
GL_BLEND texture function has been specified as well.

The combination of the texturing function and the base internal format determine how the textures
applied for each component of the texture. The texturing function operates on selected component
the texture and the color values that would be used with no texturing. (Note that the selection is
performed after the pixel-transfer function has been applied.) Recall that when you specify your

OpenGL Programming Guide — Chapter 9, Texture Mapping — 28

texture map witlgITexlmage*D() the third argument is the internal format to be selected for each
texel.

Table 9-Z&ndTable 9-3how how the texturing function and base internal format determine the
texturing application formula used for each component of the texture. There are six base internal
formats (the letters in parentheses represent their values in the tables): GL_ALPHA (A),
GL_LUMINANCE (L), GL_LUMINANCE_ALPHA (L and A), GL_INTENSITY (I), GL_RGB (C),
and GL_RGBA (C and A). Other internal formats specify desired resolutions of the texture
components and can be matched to one of these six base internal formats.

Base Internal Format Replace Texture Function Modulate Texture Function
GL_ALPHA Cc=¢, cC=¢G,
A=At A = AfAt
GL_LUMINANCE C=1l, C = GlLt,
A=Af A=Af
GL_LUMINANCE_ALPHA C=1l, C =Gy,
A=At A = AfAt
GL_INTENSITY C=l C =CGily,
A=y A=Aty
GL_RGB C=G C =G,
A=Af A= Af
GL_RGBA C=G C =GGC,
A=At A = AfAt

Table 9-2 Replace and Modulate Texture Function

Base Internal Format Decal Texture Function Blend Texture Function
GL_ALPHA undefined cC=¢G,
A = AfAt
GL_LUMINANCE undefined C =G(1-lp + Ccly,
A=Af
GL_LUMINANCE_ALPHA undefined C =Gi(1-ly + Ccly,
A = AfAt
GL_INTENSITY undefined C=G@1-¢) + Clt,
A= A1) + Al
GL_RGB C=¢G C=G(1-¢) + CCy,
A=Af A=Af
GL_RGBA C=G(1-A + CAt C=G(1-@) + &G,
A= Af A= AfAt

Table 9-3 Decal and Blend Texture Function

Note: In Table 9-2ndTable 9—3a subscript of t indicates a texture value, f indicates the incoming
fragment value, c indicates the values assigned with GL_TEXTURE_ENV_COLOR, and no
subscript indicates the final, computed value. Also in the tables, multiplication of a color triple by a
scalar means multiplying each of the R, G, and B components by the scalar; multiplying (or adding
two color triples means multiplying (or adding) each component of the second by the correspondin
component of the first.

The decal texture function makes sense only for the RGB and RGBA internal formats (remember t
texture mapping doesn’t work in color-index mode). With the RGB internal format, the color that

would have been painted in the absence of any texture mapping (the fragment’s color) is replaced
the texture color, and its alpha is unchanged. With the RGBA internal format, the fragment’s color

OpenGL Programming Guide — Chapter 9, Texture Mapping — 29

blended with the texture color in a ratio determined by the texture alpha, and the fragment’s alpha
unchanged. You use the decal texture function in situations where you want to apply an opaque
texture to an objett if you were drawing a soup can with an opaque label, for example. The decal
texture function also can be used to apply an alpha blended texture, such as an insignia onto an
airplane wing.

The replacement texture function is similar to decal; in fact, for the RGB internal format, they are
exactly the same. With all the internal formats, the component values are either replaced or left alc

For modulation, the fragment’s color is modulated by the contents of the texture map. If the base
internal format is GL_LUMINANCE, GL_LUMINANCE_ALPHA, or GL_INTENSITY, the color
values are multiplied by the same value, so the texture map modulates between the fragment’s co
(if the luminance or intensity is 1) to black (if it's 0). For the GL_RGB and GL_RGBA internal
formats, each of the incoming color components is multiplied by a corresponding (possibly differen
value in the texture. If there’s an alpha value, it's multiplied by the fragment’s alpha. Modulation is
good texture function for use with lighting, since the lit polygon color can be used to attenuate the
texture color. Most of the texture—-mapping examples in the color plates use modulation for this
reason. White, specular polygons are often used to render lit, textured objects, and the texture ime
provides the diffuse color.

The blending texture function is the only function that uses the color specified by
GL_TEXTURE_ENV_COLOR. The luminance, intensity, or color value is used somewhat like an
alpha value to blend the fragment’s color with the GL_TEXTURE_ENV_COLOR."&=aple

Uses of Blending" in Chapterfér the billboarding example, which uses a blended texture.)

Assigning Texture Coordinates

As you draw your texture—mapped scene, you must provide both object coordinates and texture
coordinates for each vertex. After transformation, the object coordinates determine where on the
screen that particular vertex is rendered. The texture coordinates determine which texel in the text
map is assigned to that vertex. In exactly the same way that colors are interpolated between two
vertices of shaded polygons and lines, texture coordinates are also interpolated between vertices.
(Remember that textures are rectangular arrays of data.)

Texture coordinates can comprise one, two, three, or four coordinates. They're usually referred to
thes, t, r,andq coordinates to distinguish them from object coordinatesg, ,andw) and from
evaluator coordinatesi @ndv; seeChapter 12 For one—dimensional textures, you usesthe
coordinate; for two—dimensional textures, yousmedt In Release 1.1, thecoordinate is ignored.
(Some implementations have 3D texture mapping as an extension, and that extensiomn uses the
coordinate.) The) coordinate, likev, is typically given the value 1 and can be used to create
homogeneous coordinates; it's described as an advanced fedfTine ip Coordinate.The
command to specify texture coordinatgid,exCoord*() is similar toglVertex*(), glColor*(), and
glNormal*()d it comes in similar variations and is used the same way betyiBegin()andglEnd()
pairs. Usually, texture—coordinate values range from 0 to 1; values can be assigned outside this ra
however, with the results described'Repeating and Clamping Textures."
void glTexCoord1234Hsifd}(TYPEcoords;
void glTexCoord1234HsifdM TYPE* coords;
Sets the current texture coordinatest(r, . Subsequent calls Vertex*() result in those
vertices being assigned the current texture coordinates.giigxCoord1*() thescoordinate is

OpenGL Programming Guide — Chapter 9, Texture Mapping — 30

set to the specified valueandr are set to 0, and is set to 1. UsinglTexCoord2*(Jallows you

to specifysandt; r andq are set to 0 and 1, respectively. WjtlhiexCoord3*() q is set to 1 and

the other coordinates are set as specified. You can specify all coordinatgsTwitCoord4*()

Use the appropriate suffix (s, i, f, or d) and the corresponding valuEYBE(GLshort, GLint,
GLfloat, or GLdouble) to specify the coordinates’ data type. You can supply the coordinates
individually, or you can use the vector version of the command to supply them in a single array
Texture coordinates are multiplied by theddtexture matrix before any texture mapping occurs.
(Se€'The Texture Matrix Stack.'Note that integer texture coordinates are interpreted directly
rather than being mapped to the range [-1,1] as normal coordinates are.

The next section discusses how to calculate appropriate texture coordinates. Instead of explicitly
assigning them yourself, you can choose to have texture coordinates calculated automatically by
OpenGL as a function of the vertex coordinates. (8&éomatic Texture—-Coordinate Generatipn."

Computing Appropriate Texture Coordinates

Two—dimensional textures are square or rectangular images that are typically mapped to the polyc
that make up a polygonal model. In the simplest case, you're mapping a rectangular texture onto ¢
model that's also rectangularfor example, your texture is a scanned image of a brick wall, and your
rectangle is to represent a brick wall of a building. Suppose the brick wall is square and the texture
square, and you want to map the whole texture to the whole wall. The texture coordinates of the
texture square are (0, 0), (1, 0), (1, 1), and (0, 1) in counterclockwise order. When you're drawing 1
wall, just give those four coordinate sets as the texture coordinates as you specify the wall’s vertici
in counterclockwise order.

Now suppose that the wall is two—-thirds as high as it is wide, and that the texture is again square.
avoid distorting the texture, you need to map the wall to a portion of the texture map so that the
aspect ratio of the texture is preserved. Suppose that you decide to use the lower two—thirds of the
texture map to texture the wall. In this case, use texture coordinates of (0,0), (1,0), (1,2/3), and (O,:
for the texture coordinates as the wall vertices are traversed in a counterclockwise order.

As a slightly more complicated example, suppose you'd like to display a tin can with a label wrapp:
around it on the screen. To obtain the texture, you purchase a can, remove the label, and scan it it
Suppose the label is 4 units tall and 12 units around, which yields an aspect ratio of 3 to 1. Since

textures must have aspect ratios Bt@ 1, you can either simply not use the top third of the texture,
or you can cut and paste the texture until it has the necessary aspect ratio. Suppose you decide ne
use the top third. Now suppose the tin can is a cylinder approximated by thirty polygons of length ¢
units (the height of the can) and width 12/30 (1/30 of the circumference of the can). You can use tt
following texture coordinates for each of the thirty approximating rectangles:

1: (0, 0), (1/30, 0), (1/30, 2/3), (0, 2/3)
2: (1/30, 0), (2/30, 0), (2/30, 2/3), (1/30, 2/3)
3: (2/30, 0), (3/30, 0), (3/30, 2/3), (2/30, 2/3)

30: (29/30, 0), (1, 0), (1, 2/3), (29/30, 2/3)

Only a few curved surfaces such as cones and cylinders can be mapped to a flat surface without
geodesic distortion. Any other shape requires some distortion. In general, the higher the curvature

OpenGL Programming Guide — Chapter 9, Texture Mapping — 31

the surface, the more distortion of the texture is required.

If you don't care about texture distortion, it's often quite easy to find a reasonable mapping. For
example, consider a sphere whose surface coordinates are given gdgs@s cosd sing, sin6),

where @0<2m, and &¢g=1t Theb-prectangle can be mapped directly to a rectangular texture map,
but the closer you get to the poles, the more distorted the texture is. The entire top edge of the tex
map is mapped to the north pole, and the entire bottom edge to the south pole. For other surfaces,
such as that of a torus (doughnut) with a large hole, the natural surface coordinates map to the tex
coordinates in a way that produces only a little distortion, so it might be suitable for many
applicationsFigure 9-&hows two tori, one with a small hole (and therefore a lot of distortion near
the center) and one with a large hole (and only a little distortion).

Figure 9-6 Texture—Map Distortion

If you're texturing spline surfaces generated with evaluatorsGkapter 1P, theu andv parameters
for the surface can sometimes be used as texture coordinates. In general, however, there’s a large
artistic component to successfully mapping textures to polygonal approximations of curved surface

Repeating and Clamping Textures

You can assign texture coordinates outside the range [0,1] and have them either clamp or repeat i
the texture map. With repeating textures, if you have a large plane with texture coordinates running
from 0.0 to 10.0 in both directions, for example, you'll get 100 copies of the texture tiled together o
the screen. During repeating, the integer part of texture coordinates is ignored, and copies of the
texture map tile the surface. For most applications where the texture is to be repeated, the texels ¢
top of the texture should match those at the bottom, and similarly for the left and right edges.

The other possibility is to clamp the texture coordinates: Any values greater than 1.0 are set to 1.0
and any values less than 0.0 are set to 0.0. Clamping is useful for applications where you want a
single copy of the texture to appear on a large surface. If the surface-texture coordinates range fr¢
0.0 to 10.0 in both directions, one copy of the texture appears in the lower corner of the surface. If
you've chosen GL_LINEAR as the filtering method (S€itering"), an equally weighted

combination of the border color and the texture color is used, as follows.

When repeating, thex2 array wraps to the opposite edge of the texture. Thus, texels on the rig|
edge are averaged with those on the left, and top and bottom texels are also averaged.

OpenGL Programming Guide — Chapter 9, Texture Mapping — 32

If there is a border, then the texel from the border is used in the weighting. Otherwise,
GL_TEXTURE_BORDER_COLOR is used. (If you've chosen GL_NEAREST as the filtering
method, the border color is completely ignored.)

Note that if you are using clamping, you can avoid having the rest of the surface affected by the
texture. To do this, use alpha values of 0 for the edges (or borders, if they are specified) of the
texture. The decal texture function directly uses the texture’s alpha value in its calculations. If you i
using one of the other texture functions, you may also need to enable blending with good source a
destination factors. (SéBlending" in Chapter §

To see the effects of wrapping, you must have texture coordinates that venture beyond [0.0, 1.0].
Start withExample 9-Jand modify the texture coordinates for the squares by mapping the texture
coordinates from 0.0 to 3.0 as follows:

glBegin(GL_QUADYS);
glTexCoord2f(0.0, 0.0); glVertex3f(-2.0, -1.0, 0.0);
glTexCoord2f(0.0, 3.0); glVertex3f(-2.0, 1.0, 0.0);
glTexCoord2f(3.0, 3.0); glVertex3f(0.0, 1.0, 0.0);
glTexCoord2f(3.0, 0.0); glVertex3f(0.0, —1.0, 0.0);

glTexCoord2f(0.0, 0.0); glVertex3f(1.0, —1.0, 0.0);
glTexCoord2f(0.0, 3.0); glVertex3f(1.0, 1.0, 0.0);

glTexCoord2f(3.0, 3.0); glvVertex3f(2.41421, 1.0, —1.41421);
glTexCoord2f(3.0, 0.0); glVertex3f(2.41421, -1.0, -1.41421); glEnd

0;
With GL_REPEAT wrapping, the result is as showkigure 9-7

Figure 9-7 Repeating a Texture

In this case, the texture is repeated in bottsttwedt directions, since the following calls are made to
glTexParameter*()

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

If GL_CLAMP is used instead of GL_REPEAT for each direction, you see something similar to
Figure 9-8

OpenGL Programming Guide — Chapter 9, Texture Mapping — 33

Figure 9-8 Clamping a Texture

You can also clamp in one direction and repeat in the other, as shbwguia 9-9

Figure 9-9 Repeating and Clamping a Texture
You've now seen all the possible argumentgfdexParameter*()which is summarized here.

void glTexParametdif}(GLenumtarget GLenunpname TYPE paran
void glTexParametdif} v(GLenunmtarget GLenunpname
TYPE *paran;

Sets various parameters that control how a texture is treated as it's applied to a fragment or
stored in a texture object. Tkergetparameter is either GL_TEXTURE_2D or
GL_TEXTURE_1D to indicate a two— or one—dimensional texture. The possible valnasor
and paramare shown ifTable 9—4You can use the vector version of the command to supply an
array of values for GL_TEXTURE_BORDER_COLOR, or you can supply individual values for
other parameters using the nonvector version. If these values are supplied as integers, they're
converted to floating—point accordingftable 4-1they’re also clamped to the range [0,1].

Parameter Values
GL_TEXTURE_WRAP_S GL_CLAMP, GL_REPEAT
GL_TEXTURE_WRAP_T GL_CLAMP, GL_REPEAT
GL_TEXTURE_MAG_FILTER GL_NEAREST, GL_LINEAR
GL_TEXTURE_MIN_FILTER GL_NEAREST, GL_LINEAR,

GL_NEAREST_MIPMAP_NEAREST,
GL_NEAREST_MIPMAP_LINEAR,

OpenGL Programming Guide — Chapter 9, Texture Mapping — 34

GL_LINEAR_MIPMAP_NEAREST,

GL_LINEAR_MIPMAP_LINEAR
GL_TEXTURE_BORDER_COLOR any four values in [0.0, 1.0]
GL_TEXTURE_PRIORITY [0.0, 1.0] for the current texture object

Table 9-4 glTexParameter*() Parameters
Try This

Figure 9-&ndFigure 9—-%re drawn using GL_NEAREST for the minification and magnification
filter. What happens if you change the filter values to GL_LINEAR? Why?

Automatic Texture—Coordinate Generation

You can use texture mapping to make contours on your models or to simulate the reflections from

arbitrary environment on a shiny model. To achieve these effects, let OpenGL automatically gener

the texture coordinates for you, rather than explicitly assigning thengiigxCoord*() To

generate texture coordinates automatically, use the comgiieexiGen()

void glTexGefifd}(GLenumcoord, GLenunpnameTYPBparam;

void glTexGefifd}v(GLenumcoord GLenunpname TYPE* paran);
Specifies the functions for automatically generating texture coordinates. The first parameter,
coord mustbe GL_S, GL_T, GL_R, or GL_Q to indicate whether texture coordjrtateor q
is to be generated. Thmameparameter is GL_TEXTURE_GEN_MODE,
GL_OBJECT_PLANE, or GL_EYE_PLANE. If it's GL_TEXTURE_GEN_M®BEmis an
integer (or, in the vector version of the command, points to an integer) that’s either
GL_OBJECT_LINEAR, GL_EYE_LINEAR, or GL_SPHERE_MAP. These symbolic constants
determine which function is used to generate the texture coordinate. With either of the other
possible values fgpnameparamis a pointer to an array of values (for the vector version)
specifying parameters for the texture—generation function.

The different methods of texture—coordinate generation have different uses. Specifying the referen
plane in object coordinates is best for when a texture image remains fixed to a moving object. Thu:
GL_OBJECT_LINEAR would be used for putting a wood grain on a table top. Specifying the
reference plane in eye coordinates (GL_EYE_LINEAR) is best for producing dynamic contour lines
on moving objects. GL_EYE_LINEAR may be used by specialists in geosciences, who are drilling
for oil or gas. As the drill goes deeper into the ground, the drill may be rendered with different colol
to represent the layers of rock at increasing depths. GL_SPHERE_MAP is predominantly used for
environment mapping. (SEEnvironment Mapping)'

Creating Contours

When GL_TEXTURE_GEN_MODE and GL_OBJECT_LINEAR are specified, the generation
function is a linear combination of the object coordinates of the vedgsp o Wo):

generated coordinatepaxg + p2yo + p320 + p4wo

Thepy, ..., p4 values are supplied as tharamargument ta@lTexGen*v() with pnameset to
GL_OBJECT_PLANE. Withpy, ...,p4 correctly normalized, this function gives the distance from
the vertex to a plane. For examplepif= p3 =p4 = 0 andp1 = 1, the function gives the distance

between the vertex and the platve 0. The distance is positive on one side of the plane, negative on
the other, and zero if the vertex lies on the plane.

OpenGL Programming Guide — Chapter 9, Texture Mapping — 35

Initially in Example 9—6equally spaced contour lines are drawn on a teapot; the lines indicate the
distance from the plane= 0. The coefficients for the plare= 0 are in this array:

static GLfloat xequalzero[] = {1.0, 0.0, 0.0, 0.0};

Since only one property is being shown (the distance from the plane), a one—-dimensional texture r
suffices. The texture map is a constant green color, except that at equally spaced intervals it incluc
a red mark. Since the teapot is sitting onxtlygplane, the contours are all perpendicular to its base.
"Plate 18" in Appendix Ehows the picture drawn by the program.

In the same example, pressing the ‘s’ key changes the parameters of the reference plane to

static GLfloat slanted[] = {1.0, 1.0, 1.0, 0.0}

the contour stripes are parallel to the plarey + z= 0, slicing across the teapot at an angle, as
shown in"Plate 18" in Appendix.ITo restore the reference plane to its initial vatue 0, press the
‘X' key.

Example 9-6 Automatic Texture—Coordinate Generation: texgen.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

#define stripelmageWidth 32
GLubyte stripelmage[4*stripelmageWidth];

static GLuint texName;

void makeStripelmage(void)

{

int j;

for (j = 0; j < stripelmageWidth; j++) {
stripelmage[4*j] = (GLubyte) ((j<=4) ? 255 : 0);
stripelmage[4*j+1] = (GLubyte) ((j>4) ? 255 : 0);
stripelmage[4*j+2] = (GLubyte) O;
stripelmage[4*j+3] = (GLubyte) 255;

* planes for texture coordinate generation */
static GLfloat xequalzero[] = {1.0, 0.0, 0.0, 0.0};
static GLfloat slanted[] = {1.0, 1.0, 1.0, 0.0};
static GLfloat *currentCoeff;

static GLenum currentPlane;

static GLint currentGenMode;

OpenGL Programming Guide — Chapter 9, Texture Mapping — 36

void init(void)

{
glClearColor (0.0, 0.0, 0.0, 0.0);
glEnable(GL_DEPTH_TEST);
glShadeModel(GL_SMOQOTH);

makeStripelmage();
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

glGenTextures(1, &texName);

glBindTexture(GL_TEXTURE_1D, texName);

glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_REPEAT);

glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER,
GL_LINEAR);

glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER,
GL_LINEAR);

glTeximagelD(GL_TEXTURE_1D, 0, GL_RGBA, stripelmageWidth, O,

GL_RGBA, GL_UNSIGNED_BYTE, stripelmage);

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
currentCoeff = xequalzero;

currentGenMode = GL_OBJECT_LINEAR,;

currentPlane = GL_OBJECT_PLANE;

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, currentGenMode);
glTexGenfv(GL_S, currentPlane, currentCoeff);

glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_1D);
glEnable(GL_CULL_FACE);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHTO);
glEnable(GL_AUTO_NORMAL);
glEnable(GL_NORMALIZE);
glFrontFace(GL_CW);

glCullFace(GL_BACK);

glMaterialf (GL_FRONT, GL_SHININESS, 64.0);

void display(void)

{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glPushMatrix ();

glRotatef(45.0, 0.0, 0.0, 1.0);
glBindTexture(GL_TEXTURE_1D, texName);
glutSolidTeapot(2.0);

glPopMatrix ();

OpenGL Programming Guide — Chapter 9, Texture Mapping — 37

glFlush();
}

void reshape(int w, int h)
{
glViewport(0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode(GL_PROJECTION);
glLoadldentity();
if (W <= h)
glOrtho (-3.5, 3.5, —3.5*(GLfloat)h/(GLfloat)w,
3.5*(GLfloat)h/(GLfloat)w, —-3.5, 3.5);
else
glOrtho (—-3.5*(GLfloat)w/(GLfloat)h,
3.5*(GLfloat)w/(GLfloat)h, -3.5, 3.5, —3.5, 3.5);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();

}

void keyboard (unsigned char key, int x, int y)
{
switch (key) {

case ‘e’

case ‘E"
currentGenMode = GL_EYE_LINEAR;
currentPlane = GL_EYE_PLANE;
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, currentGenMode);
glTexGenfv(GL_S, currentPlane, currentCoeff);
glutPostRedisplay();
break;

case ‘0"

case ‘O’
currentGenMode = GL_OBJECT_LINEAR,;
currentPlane = GL_OBJECT_PLANE;
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, currentGenMode);
glTexGenfv(GL_S, currentPlane, currentCoeff);
glutPostRedisplay();
break;

case's’

case ‘S’
currentCoeff = slanted,;
glTexGenfv(GL_S, currentPlane, currentCoeff);
glutPostRedisplay();
break;

case ‘X’

case ‘X"
currentCoeff = xequalzero;

OpenGL Programming Guide — Chapter 9, Texture Mapping — 38

glTexGenfv(GL_S, currentPlane, currentCoeff);
glutPostRedisplay();
break;
case 27:
exit(0);
break;
default:
break;

int main(int argc, char** argv)

{
glutlnit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
glutinitWindowSize (256, 256);
glutinitWindowPosition(100, 100);
glutCreateWindow (argv[0]);
init ();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutkeyboardFunc(keyboard);
glutMainLoop();
return O;

}

You enable texture—coordinate generation fostteordinate by passing GL_TEXTURE_GEN_S to
glEnable() To generate other coordinates, enable them with GL_ TEXTURE_GEN_T,
GL_TEXTURE_GEN_R, or GL_TEXTURE_GEN_Q. UgDisable()with the appropriate constant

to disable coordinate generation. Also note the use of GL_REPEAT to cause the contour lines to b
repeated across the teapot.

The GL_OBJECT_LINEAR function calculates the texture coordinates in the model’s coordinate
system. Initially inExample 9—-gthe GL_OBJECT_LINEAR function is used, so the contour lines
remain perpendicular to the base of the teapot, no matter how the teapot is rotated or viewed.
However, if you press the ‘e’ key, the texture generation mode is changed from
GL_OBJECT_LINEAR to GL_EYE_LINEAR, and the contour lines are calculated relative to the
eye coordinate system. (Pressing the ‘0’ key restores GL_OBJECT_LINEAR as the texture
generation mode.) If the reference plane #s0, the result is a teapot with red stripes parallel to the
y-z plane from the eye’s point of view, as showriRfate 18" in Appendix. IMathematically, you are
multiplying the vector §1p2p3p4) by the inverse of the modelview matrix to obtain the values used

to calculate the distance to the plane. The texture coordinate is generated with the following functit
generated coordinatepg’ Xe + p2'ye + p3'Ze + P4’ We

where p1’ p2' p3' p4’) = (p1P2p3p4) M-1

In this case Xg Ye Ze We) are the eye coordinates of the vertex, @nd.., p4 are supplied as the
paramargument t@lTexGen*()with pnameset to GL_EYE_PLANE. The primed values are

OpenGL Programming Guide — Chapter 9, Texture Mapping — 39

calculated only at the time they’re specified so this operation isn't as computationally expensive as
looks.

In all these examples, a single texture coordinate is used to generate contoaendittexture
coordinates can be generated independently, however, to indicate the distances to two different
planes. With a properly constructed two—dimensional texture map, the resulting two sets of contou
can be viewed simultaneously. For an added level of complexity, you can calcutatednginate

using GL_OBJECT_LINEAR and thecoordinate using GL_EYE_LINEAR.

Environment Mapping

The goal of environment mapping is to render an object as if it were perfectly reflective, so that the
colors on its surface are those reflected to the eye from its surroundings. In other words, if you lool
a perfectly polished, perfectly reflective silver object in a room, you see the walls, floor, and other
objects in the room reflected off the object. (A classic example of using environment mapping is th
evil, morphing cyborg in the filfTerminator 2) The objects whose reflections you see depend on the
position of your eye and on the position and surface angles of the silver object. To perform
environment mapping, all you have to do is create an appropriate texture map and then have Opel
generate the texture coordinates for you.

Environment mapping is an approximation based on the assumption that the items in the environm
are far away compared to the surfaces of the shiny abfhat is, it's a small object in a large room.
With this assumption, to find the color of a point on the surface, take the ray from the eye to the
surface, and reflect the ray off the surface. The direction of the reflected ray completely determine:
the color to be painted there. Encoding a color for each direction on a flat texture map is equivalen
putting a polished perfect sphere in the middle of the environment and taking a picture of it with a
camera that has a lens with a very long focal length placed far away. Mathematically, the lens has
infinite focal length and the camera is infinitely far away. The encoding therefore covers a circular
region of the texture map, tangent to the top, bottom, left, and right edges of the map. The texture
values outside the circle make no difference, as they are never accessed in environment mapping.

To make a perfectly correct environment texture map, you need to obtain a large silvered sphere,
a photograph of it in some environment with a camera located an infinite distance away and with a
lens that has an infinite focal length, and scan in the photograph. To approximate this result, you ¢
use a scanned-in photograph of an environment taken with an extremely wide—angle (or fish-eye
lens. Plate 21 shows a photograph taken with such a lens and the results when that image is used
an environment map.

Once you've created a texture designed for environment mapping, you need to invoke OpenGL'’s
environment—-mapping algorithm. This algorithm finds the point on the surface of the sphere with tt
same tangent surface as the point on the object being rendered, and it paints the object’s point wit
the color visible on the sphere at the corresponding point.

To automatically generate the texture coordinates to support environment mapping, use this code
your program:

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);

OpenGL Programming Guide — Chapter 9, Texture Mapping — 40

The GL_SPHERE_MAP constant creates the proper texture coordinates for the environment
mapping. As shown, you need to specify it for bothsthedt directions. However, you don’'t have to
specify any parameters for the texture—coordinate generation function.

The GL_SPHERE_MAP texture function generates texture coordinates using the following
mathematical steps.

1. uis the unit vector pointing from the origin to the vertex (in eye coordinates).

2. n'isthe current normal vector, after transformation to eye coordinates.
3. risthe reflection vectorr)(ryrz)T, which is calculated by - 2’ Tu.

4. Then an interim valuem, is calculated by

m:EJri+r‘f,+{rﬁ+ 1}3

1. Finally, thes andt texture coordinates are calculated by

F=1r,/m +IE

and

_ 1
r—ryfm +5

Advanced Features
Advanced

This section describes how to manipulate the texture matrix stack and how to qisedhdinate.
Both techniques are considered advanced, since you don't need them for many applications of tex

mapping.

The Texture Matrix Stack

Just as your model coordinates are transformed by a matrix before being rendered, texture
coordinates are multiplied by a4 matrix before any texture mapping occurs. By default, the texture
matrix is the identity, so the texture coordinates you explicitly assign or those that are automaticall
generated remain unchanged. By modifying the texture matrix while redrawing an object, however
you can make the texture slide over the surface, rotate around it, stretch and shrink, or any
combination of the three. In fact, since the texture matrix is a completely gexémabdrix, effects

such as perspective can be achieved.

When the four texture coordinates {; r, g are multiplied by the texture matrix, the resulting vector
(s’t'r ') is interpreted as homogeneous texture coordinates. In other words, the texture map is

OpenGL Programming Guide — Chapter 9, Texture Mapping — 41

indexed bys'/q’ andt'/q’ . (Remember thatq’ is ignored in standard OpenGL, but may be used by
implementations that support a 3D texture extension.) The texture matrix is actually the top matrix
a stack, which must have a stack depth of at least two matrices. All the standard matrix—-manipulat
commands such gdPushMatrix() giPopMatrix(), giMultMatrix(), andglRotate*() can be applied to

the texture matrix. To modify the current texture matrix, you need to set the matrix mode to
GL_TEXTURE, as follows:

glMatrixMode(GL_TEXTURE); /* enter texture matrix mode */
glRotated(...);

[* ... other matrix manipulations ... */
glMatrixMode(GL_MODELVIEW); /* back to modelview mode */

The g Coordinate

The mathematics of thggcoordinate in a general four-dimensional texture coordinate is as describe
in the previous section. You can make usg iof cases where more than one projection or
perspective transformation is needed. For example, suppose you want to model a spotlight that ha
some nonuniform pattethbrighter in the center, perhaps, or noncircular, because of flaps or lenses
that modify the shape of the beam. You can emulate shining such a light on a flat surface by makir
texture map that corresponds to the shape and intensity of a light, and then projecting it on the sur
in question using projection transformations. Projecting the cone of light onto surfaces in the scene
requires a perspective transformatiga (), since the lights might shine on surfaces that aren’t
perpendicular to them. A second perspective transformation occurs because the viewer sees the s
from a different (but perspective) point of view. (SBk&te 27" in Appendix for an example, and

see "Fast Shadows and Lighting Effects Using Texture Mapping" by Mark Segal, Carl Korobkin,
Rolf van Widenfelt, Jim Foran, and Paul Haeberli, SIGGRAPH 1992 Proceediagsp(ter

Graphics 26:2, July 1992, p. 249-252) for more details.)

Another example might arise if the texture map to be applied comes from a photograph that itself v
taken in perspective. As with spotlights, the final view depends on the combination of two
perspective transformations.

OpenGL Programming Guide — Chapter 9, Texture Mapping — 42

