Chapter 3
Viewing
Overview: The Camera Analogy
A Simple Example: Drawing a Cube
General-Purpose Transformation Commands
Viewing and Modeling Transformations
Thinking about Transformations
Modeling Transformations
Viewing Transformations
Projection Transformations
Perspective Projection
Orthographic Projection
Viewing Volume Clipping
Viewport Transformation
Defining the Viewport
The Transformed Depth Coordinate
Troubleshooting Transformations
Manipulating the Matrix Stacks
The Modelview Matrix Stack
The Projection Matrix Stack
Additional Clipping Planes
Examples of Composing Several Transformations
Building a Solar System
Building an Articulated Robot Arm
Reversing or Mimicking Transformations

OpenGL Programming Guide — Chapter 3, Viewing - 1

Chapter 3
Viewing

Chapter Objectives

After reading this chapter, you'll be able to do the following:
View ageometric modeh any orientation by transforming it in three—dimensional space
Control the location in three—dimensional space from which the model is viewed
Clip undesired portions of the model out of the scene that’s to be viewed

Manipulate the appropriate matrix stacks that control model transformation for viewing and
project the model onto the screen

Combine multiple transformations to mimic sophisticated systems in motion, such as a solar
system or an articulated robot arm

Reverse or mimic the operations of the geometric processing pipeline

Chapter Zxplained how to instruct OpenGL to draw the geometric models you want displayed in
your scene. Now you must decide how you want to position the models in the scene, and you mus
choose a vantage point from which to view the scene. You can use the default positioning and
vantage point, but most likely you want to specify them.

Look at the image on the cover of this book. The program that produced that image contained a sii
geometric description of a building block. Each block was carefully positioned in the scene: Some
blocks were scattered on the floor, some were stacked on top of each other on the table, and somi
were assembled to make the globe. Also, a particular viewpoint had to be chosen. Obviously, we
wanted to look at the corner of the room containing the globe. But how far away from tHe andne
where exactly] should the viewer be? We wanted to make sure that the final image of the scene
contained a good view out the window, that a portion of the floor was visible, and that all the object
in the scene were not only visible but presented in an interesting arrangement. This chapter explai
how to use OpenGL to accomplish these tasks: how to position and orient models in
three—dimensional space and how to establish the Iddadisn in three—dimensional spaoef the
viewpoint. All of these factors help determine exactly what image appears on the screen.

You want to remember that the point of computer graphics is to create a two—dimensional image o
three—dimensional objects (it has to be two—dimensional because it's drawn on a flat screen), but
need to think in three—dimensional coordinates while making many of the decisions that determine
what gets drawn on the screen. A common mistake people make when creating three—dimensiona
graphics is to start thinking too soon that the final image appears on a flat, two—dimensional screel
Avoid thinking about which pixels need to be drawn, and instead try to visualize three—dimensiona
space. Create your models in some three—dimensional universe that lies deep inside your comput:
and let the computer do its job of calculating which pixels to color.

A series of three computer operations convert an object’s three—dimensional coordinates to pixel
positions on the screen.

Transformations, which are represented by matrix multiplication, include modeling, viewing,
and projection operations. Such operations include rotation, translation, scaling, reflecting,

OpenGL Programming Guide — Chapter 3, Viewing - 1

orthographic projection, and perspective projection. Generally, you use a combination of sevel
transformations to draw a scene.

Since the scene is rendered on a rectangular window, objects (or parts of objects) that lie outs
the window must be clipped. In three—dimensional computer graphics, clipping occurs by
throwing out objects on one side of a clipping plane.

Finally, a correspondence must be established between the transformed coordinates and scre
pixels. This is known as\dewporttransformation.

This chapter describes all of these operations, and how to control them, in the following major
sections:

"Overview: The Camera Analoggives an overview of the transformation process by
describing the analogy of taking a photograph with a camera, presents a simple example
program that transforms an object, and briefly describes the basic OpenGL transformation
commands.

"Viewing and Modeling Transformationgkplains in detail how to specify and to imagine the
effect of viewing and modeling transformations. These transformations orient the model and tt
camera relative to each other to obtain the desired final image.

"Projection Transformationgiescribes how to specify the shape and orientation efd¢héng
volume The viewing volume determines how a scene is projected onto the screen (with a
perspective or orthographic projection) and which objects or parts of objects are clipped out of
the scene.

"Viewport Transformation'explains how to control the conversion of three—dimensional model
coordinates to screen coordinates.

"Troubleshooting Transformationgtesents some tips for discovering why you might not be

getting the desired effect from your modeling, viewing, projection, and viewport
transformations.

"Manipulating the Matrix Stacksliscusses how to save and restore certain transformations.
This is particularly useful when you're drawing complicated objects that are built up from
simpler ones.

"Additional Clipping Planestiescribes how to specify additional clipping planes beyond those
defined by the viewing volume.

"Examples of Composing Several Transformatiomalks you through a couple of more
complicated uses for transformations.

"Reversing or Mimicking Transformationshows you how to take a transformed point in
window coordinates and reverse the transformation to obtain its original object coordinates. Tt
transformation itself (without reversal) can also be emulated.

Overview: The Camera Analogy

The transformation process to produce the desired scene for viewing is analogous to taking a
photograph with a camera. As showrfFigure 3-1the steps with a camera (or a computer) might be

OpenGL Programming Guide — Chapter 3, Viewing — 2

the following.
1. Set up your tripod and pointing the camera at the scene (viewing transformation).
2. Arrange the scene to be photographed into the desired composition (modeling transformation)

3. Choose a camera lens or adjust the zoom (projection transformation).

4. Determine how large you want the final photograph {0 fsx example, you might want it
enlarged (viewport transformation).

After these steps are performed, the picture can be snapped or the scene can be drawn.

OpenGL Programming Guide — Chapter 3, Viewing — 3

With a Camera With a Computer

viewing

N

positlening the viewing volume
in the world

modeling

=4

posiioning tha modeals
In ﬂl% world

prejection

determining shape of viewing valume
viewport

Figure 3—1 The Camera Analogy

Note that these steps correspond to the order in which you specify the desired transformations in y

OpenGL Programming Guide — Chapter 3, Viewing — 4

program, not necessarily the order in which the relevant mathematical operations are performed o
object’s vertices. The viewing transformations must precede the modeling transformations in your

code, but you can specify the projection and viewport transformations at any point before drawing

occurs Figure 3—-2hows the order in which these operations occur on your computer.

. Modalviaw ', Viewpart ,

VERTEL > Maririx I:} ransformation [;’

X

¥

T

W eye clip normelized device window

coordnates coordinates coordinates coordinates
object
coordinates

Figure 3-2 Stages of Vertex Transformation

To specify viewing, modeling, and projection transformations, you construet edtrixM, which
is then multiplied by the coordinates of each vevtexthe scene to accomplish the transformation

v'=Mv

(Remember that vertices always have four coordinates ¢, W, though in most casesis 1 and for
two—dimensional datais 0.) Note that viewing and modeling transformations are automatically
applied to surface normal vectors, in addition to vertices. (Normal vectors are usedeyay in
coordinates) This ensures that the normal vector's relationship to the vertex data is properly
preserved.

The viewing and modeling transformations you specify are combined to form the modelview matrix
which is applied to the incomirabject coordinatesto yield eye coordinates. Next, if you've

specified additional clipping planes to remove certain objects from the scene or to provide cutaway
views of objects, these clipping planes are applied.

After that, OpenGL applies the projection matrix to yigig coordinates This transformation

defines a viewing volume; objects outside this volume are clipped so that they’re not drawn in the
final scene. After this point, thgerspective divisionis performed by dividing coordinate values by
w, to producenormalized device coordinatgSeeAppendix Ffor more information about the
meaning of thev coordinate and how it affects matrix transformations.) Finally, the transformed
coordinates are convertedwindow coordinatesby applying the viewport transformation. You can
manipulate the dimensions of the viewport to cause the final image to be enlarged, shrunk, or
stretched.

You might correctly suppose that thandy coordinates are sufficient to determine which pixels
need to be drawn on the screen. However, all the transformations are performed acootdnates

as well. This way, at the end of this transformation procesguakeies correctly reflect the depth of
a given vertex (measured in distance away from the screen). One use for this depth value is to
eliminate unnecessary drawing. For example, suppose two vertices have tixeasalynealues but
differentz values. OpenGL can use this information to determine which surfaces are obscured by
other surfaces and can then avoid drawing the hidden surface€h&gater 1Gor more information
about this technique, which is calleidlden—surface removpl

OpenGL Programming Guide — Chapter 3, Viewing -5

As you've probably guessed by now, you need to know a few things about matrix mathematics to ¢
the most out of this chapter. If you want to brush up on your knowledge in this area, you might
consult a textbook on linear algebra.

A Simple Example: Drawing a Cube

Example 3-@lraws a cube that’s scaled by a modeling transformatiorF{gaese 3—-B The viewing
transformationgluLookAt() positions and aims the camera towards where the cube is drawn. A
projection transformation and a viewport transformation are also specified. The rest of this section
walks you througtiexample 3-&nd briefly explains the transformation commands it uses. The
succeeding sections contain the complete, detailed discussion of all OpenGL's transformation
commands.

Figure 3-3 Transformed Cube

Example 3-1 Transformed Cube: cube.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

void init(void)

{
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel (GL_FLAT);

}

void display(void)
{
glClear (GL_COLOR_BUFFER_BIT);
glColor3f (1.0, 1.0, 1.0);
glLoadldentity (); I* clear the matrix */
* viewing transformation */
gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
glScalef (1.0, 2.0, 1.0); /* modeling transformation */
glutWireCube (1.0);
glFlush ();

void reshape (int w, int h)

{

OpenGL Programming Guide — Chapter 3, Viewing — 6

glViewport (0, 0, (GLsizei) w, (GLsizei) h);
gIMatrixMode (GL_PROJECTION);
glLoadldentity ();

glFrustum (-1.0, 1.0, -1.0, 1.0, 1.5, 20.0);
glMatrixMode (GL_MODELVIEW);

int main(int argc, char** argv)

{
glutlnit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutinitWindowsSize (500, 500);
glutinitWindowPosition (100, 100);
glutCreateWindow (argv[0]);
init ();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutMainLoop();
return O;

The Viewing Transformation

Recall that the viewing transformation is analogous to positioning and aiming a camera. In this coc
example, before the viewing transformation can be specifiedutinent matrix is set to the identity
matrix with glLoadldentity() This step is necessary since most of the transformation commands
multiply the current matrix by the specified matrix and then set the result to be the current matrix. I
you don't clear the current matrix by loading it with the identity matrix, you continue to combine
previous transformation matrices with the new one you supply. In some cases, you do want to
perform such combinations, but you also need to clear the matrix sometimes.

In Example 3=lafter the matrix is initialized, the viewing transformation is specified with
gluLookAt() The arguments for this command indicate where the camera (or eye position) is place:
where it is aimed, and which way is up. The arguments used here place the camera at (0, 0, 5), ail
the camera lens towards (0, 0, 0), and specifyherectoras (0, 1, 0). The up-vector defines a
unique orientation for the camera.

If gluLookAt()was not called, the camera has a default position and orientation. By default, the
camera is situated at the origin, points down the negatiwds, and has an up—vector of (0, 1, 0). So
in Example 3-1the overall effect is thafluLookAt()moves the camera 5 units along the z-axis. (See
"Viewing and Modeling Transformation$dr more information about viewing transformations.)

The Modeling Transformation

You use the modeling transformation to position and orient the model. For example, you can rotate
translate, or scale the modebr perform some combination of these operationExaimple 351
glScalef()is the modeling transformation that is used. The arguments for this command specify hov
scaling should occur along the three axes. If all the arguments are 1.0, this command has no effec
Example 351the cube is drawn twice as large in yhdirection. Thus, if one corner of the cube had

OpenGL Programming Guide — Chapter 3, Viewing — 7

originally been at (3.0, 3.0, 3.0), that corner would wind up being drawn at (3.0, 6.0, 3.0). The effec
of this modeling transformation is to transform the cube so that it isn’t a cube but a rectangular box

Try This

Change th@luLookAt()call in Example 3—10 the modeling transformatigiTranslatef(with
parameters (0.0, 0.0, —=5.0). The result should look exactly the same as when bl iosdaht()
Why are the effects of these two commands similar?

Note that instead of moving the camera (with a viewing transformation) so that the cube could be
viewed, you could have moved the cube away from the camera (with a modeling transformation).
This duality in the nature of viewing and modeling transformations is why you need to think about
the effect of both types of transformations simultaneously. It doesn't make sense to try to separate
effects, but sometimes it's easier to think about them one way rather than the other. This is also w
modeling and viewing transformations are combined intortbdelview matrivefore the
transformations are applied. (S&&ewing and Modeling Transformation&3r more detail on how

to think about modeling and viewing transformations and how to specify them to get the result you
want.)

Also note that the modeling and viewing transformations are included disthlay() routine, along

with the call that's used to draw the cubkitWireCube() This way display()can be used repeatedly

to draw the contents of the window if, for example, the window is moved or uncovered, and you've
ensured that each time, the cube is drawn in the desired way, with the appropriate transformations
The potential repeated usedi$play()underscores the need to load the identity matrix before
performing the viewing and modeling transformations, especially when other transformations migh
be performed between callsdsplay()

The Projection Transformation

Specifying the projection transformation is like choosing a lens for a camera. You can think of this

transformation as determining what the field of view or viewing volume is and therefore what objec
are inside it and to some extent how they look. This is equivalent to choosing among wide-angle,

normal, and telephoto lenses, for example. With a wide—angle lens, you can include a wider scene
the final photograph than with a telephoto lens, but a telephoto lens allows you to photograph obje
as though they're closer to you than they actually are. In computer graphics, you don't have to pay
$10,000 for a 2000—-millimeter telephoto lens; once you've bought your graphics workstation, all yc
need to do is use a smaller number for your field of view.

In addition to the field—of-view considerations, the projection transformation determines how objec
areprojectedonto the screen, as its name suggests. Two basic types of projections are provided fo
you by OpenGL, along with several corresponding commands for describing the relevant paramete
in different ways. One type is therspectiverojection, which matches how you see things in daily
life. Perspective makes objects that are farther away appear smaller; for example, it makes railroa
tracks appear to converge in the distance. If you're trying to make realistic pictures, you’ll want to
choose perspective projection, which is specified wittgtReustum()command in this code

example.

The other type of projection @rthographic, which maps objects directly onto the screen without
affecting their relative size. Orthographic projection is used in architectural and computer—aided
design applications where the final image needs to reflect the measurements of objects rather thar
how they might look. Architects create perspective drawings to show how particular buildings or

OpenGL Programming Guide — Chapter 3, Viewing — 8

interior spaces look when viewed from various vantage points; the need for orthographic projectior
arises when blueprint plans or elevations are generated, which are used in the construction of
buildings. (SeéProjection Transformationstr a discussion of ways to specify both kinds of
projection transformations.)

BeforeglFrustum()can be called to set the projection transformation, some preparation needs to
happen. As shown in thheshape(youtine inExample 351the command callegiMatrixMode()is

used first, with the argument GL_PROJECTION. This indicates that the current matrix specifies the
projection transformation; the following transformation calls then affeqiribjection matrix.. As

you can see, a few lines lagiMatrixMode()is called again, this time with GL_MODELVIEW as

the argument. This indicates that succeeding transformations now affect the modelview matrix
instead of the projection matrix. (S&danipulating the Matrix Stacksor more information about

how to control the projection and modelview matrices.)

Note thaiglLoadldentity()is used to initialize the current projection matrix so that only the specified
projection transformation has an effect. Nglwrustum()can be called, with arguments that define

the parameters of the projection transformation. In this example, both the projection transformatior
and the viewport transformation are contained irréisbape()routine, which is called when the
window is first created and whenever the window is moved or reshaped. This makes sense, since
projecting (the width to height aspect ratio of the projection viewing volume) and applying the
viewport relate directly to the screen, and specifically to the size or aspect ratio of the window on tl
screen.

Try This

Change thglFrustum()call in Example 3—10 the more commonly used Utility Library routine
gluPerspective(vith parameters (60.0, 1.0, 1.5, 20.0). Then experiment with different values,
especially fofovyandaspect

The Viewport Transformation

Together, the projection transformation and the viewport transformation determine how a scene ge
mapped onto the computer screen. The projection transformation specifies the mechanics of how
mapping should occur, and the viewport indicates the shape of the available screen area into whic
the scene is mapped. Since the viewport specifies the region the image occupies on the computer
screen, you can think of the viewport transformation as defining the size and location of the final
processed photograpHor example, whether the photograph should be enlarged or shrunk.

The arguments tglViewport() describe the origin of the available screen space within the

windowd (0, 0) in this examplé and the width and height of the available screen area, all measured
in pixels on the screen. This is why this command needs to be calledneghape(]! if the

window changes size, the viewport needs to change accordingly. Note that the width and height ar
specified using the actual width and height of the window; often, you want to specify the viewport
this way rather than giving an absolute size. ($&&wport Transformationfor more information

about how to define the viewport.)

Drawing the Scene

Once all the necessary transformations have been specified, you can draw the scene (that is, take
photograph). As the scene is drawn, OpenGL transforms each vertex of every object in the scene

OpenGL Programming Guide — Chapter 3, Viewing - 9

the modeling and viewing transformations. Each vertex is then transformed as specified by the
projection transformation and clipped if it lies outside the viewing volume described by the
projection transformation. Finally, the remaining transformed vertices are dividedihg mapped
onto the viewport.

General-Purpose Transformation Commands

This section discusses some OpenGL commands that you might find useful as you specify desirec
transformations. You've already seen a couple of these comnhtidrixMode()and

glLoadldentity() The other two commands described hegéoadMatrix*() and

glMultMatrix*() O allow you to specify any transformation matrix directly and then to multiply the
current matrix by that specified matrix. More specific transformation comrabsuish as
gluLookAt()andglScale*()1 are described in later sections.

As described in the preceding section, you need to state whether you want to modify the modelvie
or projection matrix before supplying a transformation command. You choose the matrix with
glMatrixMode() When you use nested sets of OpenGL commands that might be called repeatedly,
remember to reset the matrix mode correctly. (@hatrixMode()command can also be used to
indicate theexture matrix ; texturing is discussed in detail'iihe Texture Matrix Stack" in Chapter

9)

void glMatrixModdGLenummodée;
Specifies whether the modelview, projection, or texture matrix will be modified, using the
argument GL_MODELVIEW, GL_PROJECTION, or GL_TEXTURHErfode Subsequent
transformation commands affect the specified matrix. Note that only one matrix can be modifie
at a time. By default, the modelview matrix is the one that's modifiable, and all three matrices
contain the identity matrix.

You use thegylLoadldentity()command to clear the currently modifiable matrix for future
transformation commands, since these commands modify the current matrix. Typically, you always
call this command before specifying projection or viewing transformations, but you might also call i
before specifying a modeling transformation.

void glLoadldentityvoid);
Sets the currently modifiable matrix to thedddentity matrix.

If you want to specify explicitly a particular matrix to be loaded as the current matrix, use
glLoadMatrix*(). Similarly, useglMultMatrix*() to multiply the current matrix by the matrix passed
in as an argument. The argument for both these commands is a vector of sixteemlalu@s (. ,
mil6) that specifies a matriM as follows:

myms Mg M3
mg Mg W10 114
M3 W7 W WS
ERE RV

Remember that you might be able to maximize efficiency by using display lists to store frequently
used matrices (and their inverses) rather than recomputing themiD{Sglay—List Design

OpenGL Programming Guide — Chapter 3, Viewing — 10

Philosophy" in Chapter.Y (OpenGL implementations often must compute the inverse of the
modelview matrix so that normals and clipping planes can be correctly transformed to eye
coordinates.)

Caution : If you're programming in C and you declare a matrixrg][4], then the elemennl[i][j]
is in theith column angth row of the OpenGL transformation matrix. This is the reverse of the
standard C convention in which[i][j] is in rowi and columr). To avoid confusion, you should
declare your matrices ag16].

void glLoadMatriXfd}(const TYPE* m);
Sets the sixteen values of the current matrix to those specifiad by

void glMultMatrix{fd}(constTYPE*m);
Multiplies the matrix specified by the sixteen values pointed motyythe current matrix and
stores the result as the current matrix.

Note: All matrix multiplication with OpenGL occurs as follows: Suppose the current matthaisd
the matrix specified witlglMultMatrix*() or any of the transformation commandMisAfter
multiplication, the final matrix is alway8M. Since matrix multiplication isn’t generally
commutative, the order makes a difference.

Viewing and Modeling Transformations

Viewing and modeling transformations are inextricably related in OpenGL and are in fact combinec
into a single modelview matrix. (S&a Simple Example: Drawing a CubgOne of the toughest
problems newcomers to computer graphics face is understanding the effects of combined
three—dimensional transformations. As you've already seen, there are alternative ways to think ab:
transformations do you want to move the camera in one direction, or move the object in the
opposite direction? Each way of thinking about transformations has advantages and disadvantage
but in some cases one way more naturally matches the effect of the intended transformation. If yoi
can find a natural approach for your particular application, it's easier to visualize the necessary
transformations and then write the corresponding code to specify the matrix manipulations. The fir:
part of this section discusses how to think about transformations; later, specific commands are
presented. For now, we use only the matrix—-manipulation commands you've already seen. Finally,
keep in mind that you must cglMatrixMode()with GL_MODELVIEW as its argument prior to
performing modeling or viewing transformations.

Thinking about Transformations

Let’s start with a simple case of two transformations: a 45—-degree counterclockwise rotation about
origin around the-axis, and a translation down thexis. Suppose that the object you're drawing is
small compared to the translation (so that you can see the effect of the translation), and that it's
originally located at the origin. If you rotate the object first and then translate it, the rotated object
appears on the-axis. If you translate it down tkeaxis first, however, and then rotate about the
origin, the object is on the line=x, as shown ifrigure 3-4In general, the order of transformations

is critical. If you do transformation A and then transformation B, you almost always get something
different than if you do them in the opposite order.

OpenGL Programming Guide — Chapter 3, Viewing — 11

i\

Hetate then Translate Tranalate then Rotate
Figure 3—-4 Rotating First or Translating First

Now let's talk about the order in which you specify a series of transformations. All viewing and
modeling transformations are represented>dsmatrices. Each successigdultMatrix*() or
transformation command multiplies a newd4matrix M by the current modelview matriX to yield

CM. Finally, verticess are multiplied by the current modelview matrix. This process means that the
last transformation command called in your program is actually the first one applied to the vertices
CMv. Thus, one way of looking at it is to say that you have to specify the matrices in the reverse
order. Like many other things, however, once you've gotten used to thinking about this correctly,
backward will seem like forward.

Consider the following code sequence, which draws a single point using three transformations:

glMatrixMode(GL_MODELVIEW);
glLoadldentity();

gIMultMatrixf(N); /* apply transformation N */
glMultMatrixf(M); [* apply transformation M */
glMultMatrixf(L); * apply transformation L */
glBegin(GL_POINTS);

glVertex3f(v); /* draw transformed vertex v */
glEnd();

With this code, the modelview matrix successively contaiNsNM, and finallyNML, wherel
represents the identity matrix. The transformed vertdM&v. Thus, the vertex transformation is
N(M(Lv))D that is,v is multiplied first byL, the resultind-v is multiplied byM, and the resulting

MLv is multiplied byN. Notice that the transformations to vertegffectively occur in the opposite
order than they were specified. (Actually, only a single multiplication of a vertex by the modelview
matrix occurs; in this example, theM, andL matrices are already multiplied into a single matrix
before it's applied te.)

Grand, Fixed Coordinate System

Thus, if you like to think in terms of a grand, fixed coordinate syiStemwhich matrix
multiplications affect the position, orientation, and scaling of your mbgel have to think of the

multiplications as occurring in the opposite order from how they appear in the code. Using the sim|
example shown on the left sideFi§ure 3—4a rotation about the origin and a translation along the

OpenGL Programming Guide — Chapter 3, Viewing — 12

x—axis), if you want the object to appear on the axis after the operations, the rotation must occur fir
followed by the translation. To do this, you'll need to reverse the order of operations, so the code
looks something like this (wheRis the rotation matrix andl is the translation matrix):

glMatrixMode(GL_MODELVIEW);
glLoadldentity();

gIMultMatrixf(T); [* translation */
glMultMatrixf(R); /* rotation */
draw_the_object();

Moving a Local Coordinate System

Another way to view matrix multiplications is to forget about a grand, fixed coordinate system in
which your model is transformed and instead imagine that a local coordinate system is tied to the
object you're drawing. All operations occur relative to this changing coordinate system. With this
approach, the matrix multiplications now appear in the natural order in the code. (Regardless of
which analogy you're using, the code is the same, but how you think about it differs.) To see this ir
the translation—rotation example, begin by visualizing the object with a coordinate system tied to it.
The translation operation moves the object and its coordinate system dowastige Then, the

rotation occurs about the (how—-translated) origin, so the object rotates in place in its position on th
axis.

This approach is what you should use for applications such as articulated robot arms, where there
joints at the shoulder, elbow, and wrist, and on each of the fingers. To figure out where the tips of 1
fingers go relative to the body, you'd like to start at the shoulder, go down to the wrist, and so on,
applying the appropriate rotations and translations at each joint. Thinking about it in reverse would
far more confusing.

This second approach can be problematic, however, in cases where scaling occurs, and especiall)
when the scaling is nonuniform (scaling different amounts along the different axes). After uniform
scaling, translations move a vertex by a multiple of what they did before, since the coordinate syst
is stretched. Nonuniform scaling mixed with rotations may make the axes of the local coordinate
system nonperpendicular.

As mentioned earlier, you normally issue viewing transformation commands in your program befor
any modeling transformations. This way, a vertex in a model is first transformed into the desired
orientation and then transformed by the viewing operation. Since the matrix multiplications must b
specified in reverse order, the viewing commands need to come first. Note, however, that you don
need to specify either viewing or modeling transformations if you're satisfied with the default
conditions. If there’s no viewing transformation, the "camera" is left in the default position at the
origin, pointed toward the negatizeaxis; if there’s no modeling transformation, the model isn’t
moved, and it retains its specified position, orientation, and size.

Since the commands for performing modeling transformations can be used to perform viewing
transformations, modeling transformations diseussedirst, even if viewing transformations are
actuallyissuedfirst. This order for discussion also matches the way many programmers think when
planning their code: Often, they write all the code necessary to compose the scene, which involves
transformations to position and orient objects correctly relative to each other. Next, they decide
where they want the viewpoint to be relative to the scene they've composed, and then they write tt
viewing transformations accordingly.

OpenGL Programming Guide — Chapter 3, Viewing — 13

Modeling Transformations

The three OpenGL routines for modeling transformationgldam@nslate*() glRotate*() and

glScale*() As you might suspect, these routines transform an object (or coordinate system, if you'n
thinking of it that way) by moving, rotating, stretching, shrinking, or reflecting it. All three
commands are equivalent to producing an appropriate translation, rotation, or scaling matrix, and
then callingglMultMatrix*() with that matrix as the argument. However, these three routines might
be faster than usingiMultMatrix*(). OpenGL automatically computes the matrices for you. (See
Appendix Fif you're interested in the details.)

In the command summaries that follow, each matrix multiplication is described in terms of what it
does to the vertices of a geometric object using the fixed coordinate system approach, and in term
what it does to the local coordinate system that's attached to an object.

Translate

void giTranslatéfd}(TYPE, TYPE yTYPE);
Multiplies the current matrix by a matrix that moves (translates) an object by thexgigeand
z values (or moves the local coordinate system by the same amounts).

Figure 3—-5hows the effect alTranslate*()

Figure 3-5 Translating an Object

Note that using (0.0, 0.0, 0.0) as the argumenglftranslate*()is the identity operatidnthat is, it
has no effect on an object or its local coordinate system.

Rotate

void gIRotatdfd}(TYPEangle TYPEx, TYPEy, TYPEZ);
Multiplies the current matrix by a matrix that rotates an object (or the local coordinate system)
in a counterclockwise direction about the ray from the origin through the point 3. The
angleparameter specifies the angle of rotation in degrees.

The effect ofglRotatefg5.0, 0.0, 0.0, 1)Qwhich is a rotation of 45 degrees aboutzhaxis, is

OpenGL Programming Guide — Chapter 3, Viewing — 14

shown inFigure 3-6

-

Figure 3—6 Rotating an Object

Note that an object that lies farther from the axis of rotation is more dramatically rotated (has a larg
orbit) than an object drawn near the axis. Also, ifahgleargument is zero, trglRotate*()
command has no effect.

Scale

void glScal¢fd}(TYPE, TYPE yTYPE);
Multiplies the current matrix by a matrix that stretches, shrinks, or reflects an object along the
axes. Eaclx, y, andzcoordinate of every point in the object is multiplied by the corresponding
argumenty, y, or z. With the local coordinate system approach, the local coordinate axes are
stretched, shrunk, or reflected by the/, andz factors, and the associated object is transformed
with them.

Figure 3—8hows the effect aflScalefp.0, —-0.5, 1)0

¥

A

¥

Figure 3-7 Scaling and Reflecting an Object

OpenGL Programming Guide — Chapter 3, Viewing — 15

glScale*()is the only one of the three modeling transformations that changes the apparent size of ¢
object: Scaling with values greater than 1.0 stretches an object, and using values less than 1.0 sht
it. Scaling with a —1.0 value reflects an object across an axis. The identity values for scaling are (1
1.0, 1.0). In general, you should limit your usglScale*()to those cases where it is necessary.
UsingglScale*()decreases the performance of lighting calculations, because the normal vectors ha
to be renormalized after transformation.

Note: A scale value of zero collapses all object coordinates along that axis to zero. It's usually not
good idea to do this, because such an operation cannot be undone. Mathematically speaking, the
matrix cannot be inverted, and inverse matrices are required for certain lighting operations. (See
Chapter 5 Sometimes collapsing coordinates does make sense, however; the calculation of shadc
on a planar surface is a typical application. (Sfedows" in Chapter 4in general, if a coordinate
system is to be collapsed, the projection matrix should be used rather than the modelview matrix.

A Modeling Transformation Code Example

Example 3-8 a portion of a program that renders a triangle four times, as shdviguire 3-8
These are the four transformed triangles.

A solid wireframe triangle is drawn with no modeling transformation.

The same triangle is drawn again, but with a dashed line stipple and translated (to the
left] along the negative x—axis).

A triangle is drawn with a long dashed line stipple, with its heigraXis) halved and its width
(x—axis) increased by 50%.

A rotated triangle, made of dotted lines, is drawn.

Figure 3-8 Modeling Transformation Example

Example 3-2 Using Modeling Transformations: model.c

glLoadldentity();
glColor3f(1.0, 1.0, 1.0);
draw_triangle(); /* solid lines */

glEnable(GL_LINE_STIPPLE); /* dashed lines */
glLineStipple(1, 0xFOFO);

glLoadldentity();

glTranslatef(-20.0, 0.0, 0.0);

draw_triangle();

glLineStipple(1, OxFOOF); /*long dashed lines */

OpenGL Programming Guide — Chapter 3, Viewing — 16

glLoadldentity();
glScalef(1.5, 0.5, 1.0);
draw_triangle();

glLineStipple(1, 0x8888); /* dotted lines */
glLoadldentity();

glRotatef (90.0, 0.0, 0.0, 1.0);

draw_triangle ();

glDisable (GL_LINE_STIPPLE);

Note the use dflLoadldentity()to isolate the effects of modeling transformations; initializing the
matrix values prevents successive transformations from having a cumulative effect. Even though
usingglLoadldentity()repeatedly has the desired effect, it may be inefficient, because you may hawvi
to respecify viewing or modeling transformations. (Sdanipulating the Matrix Stackgor a better

way to isolate transformations.)

Note: Sometimes, programmers who want a continuously rotating object attempt to achieve this b
repeatedly applying a rotation matrix that has small values. The problem with this technique is that
because of round-off errors, the product of thousands of tiny rotations gradually drifts away from t
value you really want (it might even become something that isn’t a rotation). Instead of using this
technique, increment the angle and issue a new rotation command with the new angle at each upc
step.

Viewing Transformations

A viewing transformation changes the position and orientation of the viewpoint. If you recall the
camera analogy, the viewing transformation positions the camera tripod, pointing the camera towa
the model. Just as you move the camera to some position and rotate it until it points in the desired
direction, viewing transformations are generally composed of translations and rotations. Also
remember that to achieve a certain scene composition in the final image or photograph, you can e
move the camera or move all the objects in the opposite direction. Thus, a modeling transformatiol
that rotates an object counterclockwise is equivalent to a viewing transformation that rotates the
camera clockwise, for example. Finally, keep in mind that the viewing transformation commands
must be called before any modeling transformations are performed, so that the modeling
transformations take effect on the objects first.

You can manufacture a viewing transformation in any of several ways, as described next. You can
also choose to use the default location and orientation of the viewpoint, which is at the origin,
looking down the negative-axis.

Use one or more modeling transformation commands (thgiffignslate*() andglRotate*().
You can think of the effect of these transformations as moving the camera position or as movil
all the objects in the world, relative to a stationary camera.

Use the Utility Library routingjluLookAt()to define a line of sight. This routine encapsulates a
series of rotation and translation commands.

Create your own utility routine that encapsulates rotations and translations. Some applications
might require custom routines that allow you to specify the viewing transformation in a
convenient way. For example, you might want to specify the roll, pitch, and heading rotation

OpenGL Programming Guide — Chapter 3, Viewing — 17

angles of a plane in flight, or you might want to specify a transformation in terms of polar
coordinates for a camera that’s orbiting around an object.

Using glTranslate*() and glRotate*()

When you use modeling transformation commands to emulate viewing transformations, you're tryil
to move the viewpoint in a desired way while keeping the objects in the world stationary. Since the
viewpoint is initially located at the origin and since objects are often most easily constructed there .
well (seeFigure 3-8 in general you have to perform some transformation so that the objects can be
viewed. Note that, as shown in the figure, the camera initially points down the nexatie

(You're seeing the back of the camera.)

gz

Figure 3—-9 Object and Viewpoint at the Origin

In the simplest case, you can move the viewpoint backward, away from the objects; this has the s
effect as moving the objects forward, or away from the viewpoint. Remember that by default forwa
is down the negative-axis; if you rotate the viewpoint, forward has a different meaning. So, to put £
units of distance between the viewpoint and the objects by moving the viewpoint, as skayumen
3-1Quse

glTranslatef(0.0, 0.0, —5.0);

This routine moves the objects in the scene -5 units alomguie This is also equivalent to moving
the camera +5 units along thaxis.

OpenGL Programming Guide — Chapter 3, Viewing — 18

¥

A A ==

] '|I | I ___J

™! — "
To T
B B |
= i
F =

Figure 3—-10 Separating the Viewpoint and the Object

Now suppose you want to view the objects from the side. Should you issue a rotate command befc
or after the translate command? If you're thinking in terms of a grand, fixed coordinate system, firs
imagine both the object and the camera at the origin. You could rotate the object first and then mo
it away from the camera so that the desired side is visible. Since you know that with the fixed
coordinate system approach, commands have to be issued in the opposite order in which they shc
take effect, you know that you need to write the translate command first in your code and follow it
with the rotate command.

Now let’s use the local coordinate system approach. In this case, think about moving the object an
its local coordinate system away from the origin; then, the rotate command is carried out using the
now-translated coordinate system. With this approach, commands are issued in the order in whict
they’re applied, so once again the translate command comes first. Thus, the sequence of
transformation commands to produce the desired result is

glTranslatef(0.0, 0.0, -5.0);
glRotatef(90.0, 0.0, 1.0, 0.0);

If you're having trouble keeping track of the effect of successive matrix multiplications, try using
both the fixed and local coordinate system approaches and see whether one makes more sense t(
Note that with the fixed coordinate system, rotations always occur about the grand origin, whereas
with the local coordinate system, rotations occur about the origin of the local system. You might al
try using thegluLookAt()utility routine described in the next section.

Using the gluLookAt() Utility Routine

Often, programmers construct a scene around the origin or some other convenient location, then t|
want to look at it from an arbitrary point to get a good view of it. As its name suggests, the
gluLookAt()utility routine is designed for just this purpose. It takes three sets of arguments, which
specify the location of the viewpoint, define a reference point toward which the camera is aimed, a
indicate which direction is up. Choose the viewpoint to yield the desired view of the scene. The
reference point is typically somewhere in the middle of the scene. (If you've built your scene at the

OpenGL Programming Guide — Chapter 3, Viewing — 19

origin, the reference point is probably the origin.) It might be a little trickier to specify the correct
up-vector. Again, if you've built some real-world scene at or around the origin and if you've been
taking the positivg—axis to point upward, then that's your up-vectaglérookAt() However, if

you're designing a flight simulator, up is the direction perpendicular to the plane’s wings, from the
plane toward the sky when the plane is right-side up on the ground.

ThegluLookAt()routine is particularly useful when you want to pan across a landscape, for instance
With a viewing volume that's symmetric in bottandy, the gyex, eyey, eyepoint specified is

always in the center of the image on the screen, so you can use a series of commands to move th
point slightly, thereby panning across the scene.

void gluLookA{(GLdoubleeyex GLdoubleeyey GLdoubleeyez GLdoublecenterx GLdouble

centery GLdoublecenterz GLdoubleupx, GLdoubleupy, GLdoubleup?);
Defines a viewing matrix and multiplies it to the right of the current matrix. The desired
viewpoint is specified byyexeyey andeyez Thecenterx centery and centerzarguments
specify any point along the desired line of sight, but typically they’re some point in the center o
the scene being looked at. Tingx upy, andupzarguments indicate which direction is up (that
is, the direction from the bottom to the top of the viewing volume).

In the default position, the camera is at the origin, is looking down the negadixis, and has the
positivey—axis as straight up. This is the same as calling

gluLookat (0.0, 0.0, 0.0, 0.0, 0.0, —100.0, 0.0, 1.0, 0.0);

Thez value of the reference point is —100.0, but could be any negabtizeause the line of sight will
remain the same. In this case, you don’t actually want tglehlbokAt() because this is the default
(seeFigure 3—-1jland you are already there! (The lines extending from the camera represent the
viewing volume, which indicates its field of view.)

¥
up £
vector
N
|
L

-
z

Figure 3—-11 Default Camera Position

Figure 3—12hows the effect of a typicgluLookAt()routine. The camera positioayex, eyey, eypz
is at (4, 2, 1). In this case, the camera is looking right at the model, so the reference point is at (2, .
-3). An orientation vector of (2, 2, —1) is chosen to rotate the viewpoint to this 45-degree angle.

OpenGL Programming Guide — Chapter 3, Viewing — 20

Figure 3—-12 Using gluLookAt()
So, to achieve this effect, call

gluLookAt(4.0, 2.0, 1.0, 2.0, 4.0, -3.0, 2.0, 2.0, —1.0);

Note thagluLookAt()is part of the Utility Library rather than the basic OpenGL library. This isn’t
because it's not useful, but because it encapsulates several basic OpenGL cahepacidisally,
glTranslate*()andglRotate*() To see this, imagine a camera located at an arbitrary viewpoint and
oriented according to a line of sight, both as specified glithookAt()and a scene located at the
origin. To "undo" whagluLookAt()does, you need to transform the camera so that it sits at the origit
and points down the negatizeaxis, the default position. A simple translate moves the camera to the
origin. You can easily imagine a series of rotations about each of the three axes of a fixed coordin:
system that would orient the camera so that it pointed toward negatiliges. Since OpenGL

allows rotation about an arbitrary axis, you can accomplish any desired rotation of the camera with
singleglRotate*() command.

Note: You can have only one active viewing transformation. You cannot try to combine the effects
of two viewing transformations, any more than a camera can have two tripods. If you want to chan
the position of the camera, make sure yougihalbadldentity(to wipe away the effects of any

current viewing transformation.

Advanced

To transform any arbitrary vector so that it's coincident with another arbitrary vector (for instance,
the negative—axis), you need to do a little mathematics. The axis about which you want to rotate is
given by the cross product of the two normalized vectors. To find the angle of rotation, normalize tl
initial two vectors. The cosine of the desired angle between the vectors is equal to the dot product
the normalized vectors. The angle of rotation around the axis given by the cross product is always
between 0 and 180 degrees. (3gpendix Efor definitions of cross and dot products.)

Note that computing the angle between two normalized vectors by taking the inverse cosine of the
dot product is not very accurate, especially for small angles. But it should work well enough to get
you started.

Creating a Custom Utility Routine

OpenGL Programming Guide — Chapter 3, Viewing — 21

Advanced

For some specialized applications, you might want to define your own transformation routine. Sinc
this is rarely done and in any case is a fairly advanced topic, it's left mostly as an exercise for the
reader. The following exercises suggest two custom viewing transformations that might be useful.

Try This

Suppose you're writing a flight simulator and you'd like to display the world from the point of
view of the pilot of a plane. The world is described in a coordinate system with the origin on th
runway and the plane at coordinatesy(, 2. Suppose further that the plane has sootiepitch,
andheading(these are rotation angles of the plane relative to its center of gravity).

Show that the following routine could serve as the viewing transformation:

void pilotView{GLdouble planex, GLdouble planey,
GLdouble planez, GLdouble roll,
GLdouble pitch, GLdouble heading)

{
glRotated(roll, 0.0, 0.0, 1.0);
glRotated(pitch, 0.0, 1.0, 0.0);
glRotated(heading, 1.0, 0.0, 0.0);
glTranslated(—planex, —planey, —planez);
}

Suppose your application involves orbiting the camera around an object that's centered at the
origin. In this case, you'd like to specify the viewing transformation by using polar coordinates.
Let thedistancevariable define the radius of the orbit, or how far the camera is from the origin.
(Initially, the camera is movedistanceunits along the positive-axis.) Thezimuthdescribes

the angle of rotation of the camera about the object in-tigglane, measured from the positive
y—axis. Similarlyelevationis the angle of rotation of the camera in yhegplane, measured from

the positivez—axis. Finallytwistrepresents the rotation of the viewing volume around its line of
sight.

Show that the following routine could serve as the viewing transformation:

void polarView{GLdouble distance, GLdouble twist,
GLdouble elevation, GLdouble azimuth)

{
glTranslated(0.0, 0.0, —distance);
glRotated(—twist, 0.0, 0.0, 1.0);
glRotated(—elevation, 1.0, 0.0, 0.0);
glRotated(azimuth, 0.0, 0.0, 1.0);

}

Projection Transformations

The previous section described how to compose the desired modelview matrix so that the correct
modeling and viewing transformations are applied. This section explains how to define the desired
projection matrix, which is also used to transform the vertices in your scene. Before you issue any
the transformation commands described in this section, remember to call

OpenGL Programming Guide — Chapter 3, Viewing — 22

glMatrixMode(GL_PROJECTION);
glLoadldentity();

so that the commands affect the projection matrix rather than the modelview matrix and so that yoi
avoid compound projection transformations. Since each projection transformation command
completely describes a particular transformation, typically you don’t want to combine a projection
transformation with another transformation.

The purpose of the projection transformation is to defiviewaing volumewhich is used in two

ways. The viewing volume determines how an object is projected onto the screen (that is, by using
perspective or an orthographic projection), and it defines which objects or portions of objects are
clipped out of the final image. You can think of the viewpoint we've been talking about as existing :
one end of the viewing volume. At this point, you might want to ret&sgimple Example: Drawing

a Cube'for its overview of all the transformations, including projection transformations.

Perspective Projection

The most unmistakable characteristic of perspective projection is foreshortening: the farther an obj
is from the camera, the smaller it appears in the final image. This occurs because the viewing volu
for a perspective projection idrastum of a pyramid (a truncated pyramid whose top has been cut
off by a plane parallel to its base). Objects that fall within the viewing volume are projected toward
the apex of the pyramid, where the camera or viewpoint is. Objects that are closer to the viewpoint
appear larger because they occupy a proportionally larger amount of the viewing volume than thos
that are farther away, in the larger part of the frustum. This method of projection is commonly usec
for animation, visual simulation, and any other applications that strive for some degree of realism
because it's similar to how our eye (or a camera) works.

The command to define a frustuglFrustum() calculates a matrix that accomplishes perspective
projection and multiplies the current projection matrix (typically the identity matrix) by it. Recall that
theviewing volume is used to clip objects that lie outside of it; the four sides of the frustum, its top,
and its base correspond to the six clipping planes of the viewing volume, as sHegurén3-13
Obijects or parts of objects outside these planes are clipped from the final image. Note that
glFrustum()doesn’t require you to define a symmetric viewing volume.

B

top

bottam

- mear -

- = >

Figure 3—-13 Perspective Viewing Volume Specified by glFrustum()

OpenGL Programming Guide — Chapter 3, Viewing — 23

void glFrustun{GLdoubleleft, GLdoubleright, GLdoublebottom
GLdoubletop GLdoublenear, GLdoublefar);

Creates a matrix for a perspective—-view frustum and multiplies the current matrix by it. The
frustum’s viewing volume is defined by the parametéeft; bottom—-nea) and ¢ight, top,

—neay specify thex, y, 3 coordinates of the lower-left and upper-right corners of the near
clipping plane;near andfar give the distances from the viewpoint to the near and far clipping
planes. They should always be positive.

The frustum has a default orientation in three—dimensional space. You can perform rotations or
translations on the projection matrix to alter this orientation, but this is tricky and nearly always
avoidable.

Advanced

Also, the frustum doesn’t have to be symmetrical, and its axis isn't necessarily aligned with the
z-axis. For example, you can g#erustum()to draw a picture as if you were looking through a
rectangular window of a house, where the window was above and to the right of you. Photographe
use such a viewing volume to create false perspectives. You might use it to have the hardware
calculate images at much higher than normal resolutions, perhaps for use on a printer. For exampl
you want an image that has twice the resolution of your screen, draw the same picture four times,
each time using the frustum to cover the entire screen with one—quarter of the image. After each
quarter of the image is rendered, you can read the pixels back to collect the data for the
higher-resolution image. (S8hapter &or more information about reading pixel data.)

Although it's easy to understand conceptuaisrustum()isn’t intuitive to use. Instead, you might

try the Utility Library routinegluPerspective()This routine creates a viewing volume of the same
shape aglFrustum()does, but you specify it in a different way. Rather than specifying corners of the
near clipping plane, you specify the angle of the field of viéwof theta, inFigure 3—1)in they
direction and the aspect ratio of the width to heighf) ((For a square portion of the screen, the
aspect ratio is 1.0.) These two parameters are enough to determine an untruncated pyramid along
line of sight, as shown iRigure 3—14You also specify the distance between the viewpoint and the
near and far clipping planes, thereby truncating the pyramid. NotgltRgrspective(js limited to
creating frustums that are symmetric in bothxh@nd/axes along the line of sight, but this is

usually what you want.

-4 near -
-~

Tar
Figure 3—-14 Perspective Viewing Volume Specified by gluPerspective()

void gluPerspectivisLdoublefovy, GLdoubleaspect

OpenGL Programming Guide — Chapter 3, Viewing — 24

GLdoublenear, GLdoubléfar);
Creates a matrix for a symmetric perspective—view frustum and multiplies the current matrix b
it. fovyis the angle of the field of view in tke plane; its value must be in the range [0.0,180.0].
aspectis the aspect ratio of the frustum, its width divided by its heiglar.andfar values the
distances between the viewpoint and the clipping planes, along the negattiee They should
always be positive.

Just as witlglFrustum() you can apply rotations or translations to change the default orientation of
the viewing volume created lmfuPerspective()With no such transformations, the viewpoint
remains at the origin, and the line of sight points down the negatiés.

With gluPerspective()you need to pick appropriate values for the field of view, or the image may
look distorted. For example, suppose you're drawing to the entire screen, which happens to be 11
inches high. If you choose a field of view of 90 degrees, your eye has to be about 7.8 inches from -
screen for the image to appear undistorted. (This is the distance that makes the screen subtend 9(
degrees.) If your eye is farther from the screen, as it usually is, the perspective doesn’t look right. |
your drawing area occupies less than the full screen, your eye has to be even closer. To get a peri
field of view, figure out how far your eye normally is from the screen and how big the window is,
and calculate the angle the window subtends at that size and distance. It's probably smaller than y
would guess. Another way to think about it is that a 94—degree field of view with a 35-millimeter
camera requires a 20—millimeter lens, which is a very wide—angle lerng.r{fdteshooting
Transformationsfor more details on how to calculate the desired field of view.)

The preceding paragraph mentions inches and milliméwdosthese really have anything to do with
OpenGL? The answer is, in a word, no. The projection and other transformations are inherently
unitless. If you want to think of the near and far clipping planes as located at 1.0 and 20.0 meters,
inches, kilometers, or leagues, it's up to you. The only rule is that you have to use a consistent uni
measurement. Then the resulting image is drawn to scale.

Orthographic Projection

With an orthographic projection, the viewing volume is a rectangular parallelepiped, or more
informally, a box (se€igure 3—-1p Unlike perspective projection, the size of the viewing volume
doesn’t change from one end to the other, so distance from the camera doesn’t affect how large ai
object appears. This type of projection is used for applications such as creating architectural
blueprints and computer—aided design, where it's crucial to maintain the actual sizes of objects ani
angles between them as they're projected.

OpenGL Programming Guide — Chapter 3, Viewing — 25

G
e - right H

viewpont

viewing valumes
botlom

near far

Figure 3-15 Orthographic Viewing Volume

The commandjlOrtho() creates an orthographic parallel viewing volume. As wiBrustum() you
specify the corners of the near clipping plane and the distance to the far clipping plane.

void glOrthaGLdoubleleft, GLdoubleright, GLdoublebottom
GLdoubletop, GLdoublenear, GLdoublefar);

Creates a matrix for an orthographic parallel viewing volume and multiplies the current matrix
by it. (eft, bottom, —nepand (ight, top, —negrare points on the near clipping plane that are
mapped to the lower-left and upper-right corners of the viewport window, respetgitely. (
bottom, —fgrand (ight, top, —faJ are points on the far clipping plane that are mapped to the
same respective corners of the viewport. Bathrandfar can be positive or negative.

With no other transformations, the direction of projection is parallel te-res, and the viewpoint
faces toward the negatizeaxis. Note that this means that the values passedfar fimdnearare

used as negativevalues if these planes are in front of the viewpoint, and positive if they're behind
the viewpoint.

For the special case of projecting a two—dimensional image onto a two—dimensional screen, use tt
Utility Library routine gluOrtho2D() This routine is identical to the three—dimensional version,
glortho(), except that all the coordinates for objects in the scene are assumed to lie between -1.0
and 1.0. If you're drawing two—dimensional objects using the two—dimensional vertex commands, .
thez coordinates are zero; thus, none of the objects are clipped becausezofahss.
void gluOrtho2(GLdoubldeft, GLdoubleright,
GLdoublebottom GLdoubletop);
Creates a matrix for projecting two—dimensional coordinates onto the screen and multiplies the
current projection matrix by it. The clipping region is a rectangle with the lower—left corner at
(left, bottom) and the upper-right corner aight, top).

Viewing Volume Clipping

After the vertices of the objects in the scene have been transformed by the modelview and projecti
matrices, any primitives that lie outside the viewing volume are clipped. The six clipping planes ust
are those that define the sides and ends of the viewing volume. You can specify additional clipping

OpenGL Programming Guide — Chapter 3, Viewing — 26

planes and locate them wherever you choose."@&k#tional Clipping Planesfor information
about this relatively advanced topic.) Keep in mind that OpenGL reconstructs the edges of polygor
that get clipped.

Viewport Transformation

Recalling the camera analogy, you know that the viewport transformation corresponds to the stage
where the size of the developed photograph is chosen. Do you want a wallet-size or a poster—size
photograph? Since this is computer graphics, the viewport is the rectangular region of the window
where the image is drawRigure 3—-18hows a viewport that occupies most of the screen. The
viewport is measured in window coordinates, which reflect the position of pixels on the screen
relative to the lower-left corner of the window. Keep in mind that all vertices have been transforme
by the modelview and projection matrices by this point, and vertices outside the viewing volume
have been clipped.

|
|

Figure 3-16 Viewport Rectangle

Defining the Viewport

The window system, not OpenGL, is responsible for opening a window on the screen. However, b
default the viewport is set to the entire pixel rectangle of the window that's opened. You use the
glViewport()command to choose a smaller drawing region; for example, you can subdivide the
window to create a split—screen effect for multiple views in the same window.

void glViewporf{GLint x, GLinty, GLsizeiwidth, GLsizeiheigh);
Defines a pixel rectangle in the window into which the final image is mappedx, e (
parameter specifies the lower-left corner of the viewportwadith andheightare the size of the
viewport rectangle. By default, the initial viewport values &ed(winWidth, winHeight where
winWidthandwinHeightare the size of the window.

The aspect ratio of a viewport should generally equal the aspect ratio of the viewing volume. If the
two ratios are different, the projected image will be distorted when mapped to the viewport, as sho
in Figure 3—17Note that subsequent changes to the size of the window don’t explicitly affect the
viewport. Your application should detect window resize events and modify the viewport
appropriately.

OpenGL Programming Guide — Chapter 3, Viewing — 27

undistorted disterted

Figure 3-17 Mapping the Viewing Volume to the Viewport

In Figure 3-1,7the left figure shows a projection that maps a square image onto a square viewport
using these routines:

gluPerspective(fovy, 1.0, near, far);
glViewport(0, 0, 400, 400);

However, in the right figure, the window has been resized to a nonequilateral rectangular viewport,
but the projection is unchanged. The image appears compressed alpraxthe

gluPerspective(fovy, 1.0, near, far);
glViewport (0, 0, 400, 200);

To avoid the distortion, modify the aspect ratio of the projection to match the viewport:

gluPerspective(fovy, 2.0, near, far);
glViewport(0, 0, 400, 200);

Try This

Modify an existing program so that an object is drawn twice, in different viewports. You might draw
the object with different projection and/or viewing transformations for each viewport. To create two
side—by-side viewports, you might issue these commands, along with the appropriate modeling,
viewing, and projection transformations:

glViewport (0, 0, sizex/2, sizey);

glViewport (sizex/2, 0, sizex/2, sizey);

The Transformed Depth Coordinate

The depthZ) coordinate is encoded during the viewport transformation (and later stored in the dep
buffer). You can scalevalues to lie within a desired range with tiiBepthRange(ommand.

OpenGL Programming Guide — Chapter 3, Viewing — 28

(Chapter 1@liscusses the depth buffer and the corresponding uses for the depth coordinate®y Unlik
andy window coordinatesz window coordinates are treated by OpenGL as though they always rang
from 0.0 to 1.0.

void gIDepthRang@L clampdnear, GLclampdfar);
Defines an encoding farcoordinates that's performed during the viewport transformation. The
nearandfar values represent adjustments to the minimum and maximum values that can be
stored in the depth buffer. By default, they're 0.0 and 1.0, respectively, which work for most
applications. These parameters are clamped to lie within [0,1].

In perspective projection, the transformed depth coordinate (likeahdy coordinates) is subject to
perspective division by the coordinate. As the transformed depth coordinate moves farther away
from the near clipping plane, its location becomes increasingly less preciseig@es3-18

™~

depth coordinate spacing

Figure 3-18 Perspective Projection and Transformed Depth Coordinates

Therefore, perspective division affects the accuracy of operations which rely upon the transformed
depth coordinate, especially depth—buffering, which is used for hidden surface removal.

Troubleshooting Transformations

It's pretty easy to get a camera pointed in the right direction, but in computer graphics, you have tc
specify position and direction with coordinates and angles. As we can attest, it's all too easy to
achieve the well-known black—screen effect. Although any number of things can go wrong, often y
get this effedil which results in absolutely nothing being drawn in the window you open on the
screeifil from incorrectly aiming the "camera" and taking a picture with the model behind you. A
similar problem arises if you don’t choose a field of view that's wide enough to view your objects bi
narrow enough so they appear reasonably large.

If you find yourself exerting great programming effort only to create a black window, try these
diagnostic steps.

1. Check the obvious possibilities. Make sure your system is plugged in. Make sure you're drawit
your objects with a color that’s different from the color with which you're clearing the screen.
Make sure that whatever states you're using (such as lighting, texturing, alpha blending, logice
operations, or antialiasing) are correctly turned on or off, as desired.

2. Remember that with the projection commands, the near and far coordinates measure distance
from the viewpoint and that (by default) you're looking down the negatwes. Thus, if the

OpenGL Programming Guide — Chapter 3, Viewing — 29

near value is 1.0 and the far 3.0, objects must hawverdinates between —1.0 and —3.0 in order
to be visible. To ensure that you haven't clipped everything out of your scene, temporarily set 1
near and far clipping planes to some absurdly inclusive values, such as 0.001 and 1000000.0.
This alters appearance for operations such as depth-buffering and fog, but it might uncover
inadvertently clipped objects.

3. Determine where the viewpoint is, in which direction you're looking, and where your objects
are. It might help to create a real three—dimensionalSpesieg your hands, for instanddo
figure these things out.

4. Make sure you know where you're rotating about. You might be rotating about some arbitrary
location unless you translated back to the origin first. It's OK to rotate about any point unless
you're expecting to rotate about the origin.

5. Check your aim. UsgluLookAt()to aim the viewing volume at your objects. Or draw your
objects at or near the origin, and gfEranslate*()as a viewing transformation to move the
camera far enough in tlzedirection only so that the objects fall within the viewing volume.
Once you've managed to make your objects visible, try to change the viewing volume
incrementally to achieve the exact result you want, as described next.

Even after you've aimed the camera in the correct direction and you can see your objects, they mi
appear too small or too large. If you're usiglgPerspective()you might need to alter the angle
defining the field of view by changing the value of the first parameter for this command. You can u
trigonometry to calculate the desired field of view given the size of the object and its distance from
the viewpoint: The tangent of half the desired angle is half the size of the object divided by the
distance to the object (sé&gure 3—1P Thus, you can use an arctangent routine to compute half the
desired angleExample 3—assumes such a routirean2() which calculates the arctangent given the
length of the opposite and adjacent sides of a right triangle. This result then needs to be convertec
from radians to degrees.

Distarce ———— =

Figure 3-19 Using Trigonometry to Calculate the Field of View

Example 3-3 Calculating Field of View

#define Pl 3.1415926535

double calculateAngle(double size, double distance)

OpenGL Programming Guide — Chapter 3, Viewing — 30

double radtheta, degtheta;

radtheta = 2.0 * atan2 (size/2.0, distance);
degtheta = (180.0 * radtheta) / PI;
return (degtheta);

}

Of course, typically you don’t know the exact size of an object, and the distance can only be
determined between the viewpoint and a single point in your scene. To obtain a fairly good
approximate value, find the bounding box for your scene by determining the maximum and minimc
X, ¥, andz coordinates of all the objects in your scene. Then calculate the radius of a bounding spht
for that box, and use the center of the sphere to determine the distance and the radius to determin
size.

For example, suppose all the coordinates in your object satisfy the equatiars3;-5<y< 7, and -5
<7< 5. Then the center of the bounding box is (1, 6, 0), and the radius of a bounding sphere is the
distance from the center of the box to any cdrnsaiy (3, 7, 8)l or

Jo 24 767+ (5- 0 = 50 5.477

If the viewpoint is at (8, 9, 10), the distance between it and the center is

J(Es-1;13+ (9- 62+ (10- 02 = J58=12.570

The tangent of the half angle is 5.477 divided by 12.570, which equals 0.4357, so the half angle is
23.54 degrees.

Remember that the field—of-view angle affects the optimal position for the viewpoint, if you're tryin
to achieve a realistic image. For example, if your calculations indicate that you need a 179-degree
field of view, the viewpoint must be a fraction of an inch from the screen to achieve realism. If your
calculated field of view is too large, you might need to move the viewpoint farther away from the
object.

Manipulating the Matrix Stacks

The modelview and projection matrices you've been creating, loading, and multiplying have only
been the visible tips of their respective icebergs. Each of these matrices is actually the topmost
member of a stack of matrices ($égure 3—-20

OpenGL Programming Guide — Chapter 3, Viewing — 31

projection
o matrix staok
{2 4 malricas)

madalview
" matrix stack
_.._L‘D (32 4=4 matrices}

Figure 3—20 Modelview and Projection Matrix Stacks

A stack of matrices is useful for constructing hierarchical models, in which complicated objects are
constructed from simpler ones. For example, suppose you're drawing an automobile that has four
wheels, each of which is attached to the car with five bolts. You have a single routine to draw a wh
and another to draw a bolt, since all the wheels and all the bolts look the same. These routines dr
wheel or a bolt in some convenient position and orientation, say centered at the origin with its axis
coincident with the axis. When you draw the car, including the wheels and bolts, you want to call
the wheel-drawing routine four times with different transformations in effect each time to position t
wheels correctly. As you draw each wheel, you want to draw the bolts five times, each time transla
appropriately relative to the wheel.

Suppose for a minute that all you have to do is draw the car body and the wheels. The English
description of what you want to do might be something like this:

Draw the car body. Remember where you are, and translate to the right front wheel. Draw the
wheel and throw away the last translation so your current position is back at the origin of the ¢
body. Remember where you are, and translate to the left front wheel....

Similarly, for each wheel, you want to draw the wheel, remember where you are, and successively
translate to each of the positions that bolts are drawn, throwing away the transformations after eac
bolt is drawn.

Since the transformations are stored as matrices, a matrix stack provides an ideal mechanism for
doing this sort of successive remembering, translating, and throwing away. All the matrix operatior
that have been described so fit.¢adMatrix(), giMultMatrix(), glLoadldentity()and the commands
that create specific transformation matrices) deal with the current matrix, or the top matrix on the
stack. You can control which matrix is on top with the commands that perform stack operations:
glPushMatrix() which copies the current matrix and adds the copy to the top of the stack, and
glPopMatrix(), which discards the top matrix on the stack, as showigire 3—-21(Remember that

the current matrix is always the matrix on the top.) In effgrishMatrix()means "remember where
you are" andjlPopMatrix() means "go back to where you were."

OpenGL Programming Guide — Chapter 3, Viewing — 32

Figure 3-21 Pushing and Popping the Matrix Stack

void gIPushMatriXvoid);
Pushes all matrices in the current stack down one level. The current stack is determined by
glMatrixMode() The topmost matrix is copied, so its contents are duplicated in both the top anc
second-from-the-top matrix. If too many matrices are pushed, an error is generated.

void gIPopMatrixvoid);
Pops the top matrix off the stack, destroying the contents of the popped matrix. What was the
second-from—the-top matrix becomes the top matrix. The current stack is determined by
glMatrixMode() If the stack contains a single matrix, calliggeopMatrix() generates an error.

Example 3—draws an automobile, assuming the existence of routines that draw the car body, a
wheel, and a bolt.

Example 3—-4 Pushing and Popping the Matrix

draw_wheel_and_bolts()

{

long i;

draw_wheel();
for(i=0;i<5;i++){
glPushMatrix();
glRotatef(72.0%,0.0,0.0,1.0);
glTranslatef(3.0,0.0,0.0);
draw_bolt();
glPopMatrix();
}
}

draw_body_and_wheel_and_bolts()
{
draw_car_body();
glPushMatrix();
glTranslatef(40,0,30); /*move to first wheel position*/
draw_wheel_and_bolts();
glPopMatrix();

OpenGL Programming Guide — Chapter 3, Viewing — 33

glPushMatrix();
glTranslatef(40,0,-30); /*move to 2nd wheel position*/
draw_wheel_and_bolts();

glPopMatrix();

[*draw last two wheels similarly*/

}

This code assumes the wheel and bolt axes are coincident withetkis, that the bolts are evenly
spaced every 72 degrees, 3 units (maybe inches) from the center of the wheel, and that the front
wheels are 40 units in front of and 30 units to the right and left of the car’s origin.

A stack is more efficient than an individual matrix, especially if the stack is implemented in
hardware. When you push a matrix, you don’t need to copy the current data back to the main proc
and the hardware may be able to copy more than one element of the matrix at a time. Sometimes
might want to keep an identity matrix at the bottom of the stack so that you don’t need to call
glLoadldentity()repeatedly.

The Modelview Matrix Stack

As you've seen earlier iViewing and Modeling Transformationsthe modelview matrix contains

the cumulative product of multiplying viewing and modeling transformation matrices. Each viewing
or modeling transformation creates a hew matrix that multiplies the current modelview matrix; the
result, which becomes the new current matrix, represents the composite transformation. The
modelview matrix stack contains at least thirty—twé rhatrices; initially, the topmost matrix is the
identity matrix. Some implementations of OpenGL may support more than thirty—two matrices on tl
stack. To find the maximum allowable number of matrices, you can use the query command
glGetinteger¢yGL_MAX_MODELVIEW_STACK_DEPTH GLint * param3.

The Projection Matrix Stack

The projection matrix contains a matrix for the projection transformation, which describes the
viewing volume. Generally, you don’t want to compose projection matrices, so you issue
glLoadldentity()before performing a projection transformation. Also for this reason, the projection
matrix stack need be only two levels deep; some OpenGL implementations may allow more than t
4x4 matrices. To find the stack depth, call
glGetinteger¢yGL_MAX_PROJECTION_STACK DEPTHGLInt *paramg.

One use for a second matrix in the stack would be an application that needs to display a help wind
with text in it, in addition to its normal window showing a three—dimensional scene. Since text is
most easily positioned with an orthographic projection, you could change temporarily to an
orthographic projection, display the help, and then return to your previous projection:

gIMatrixMode(GL_PROJECTION);

glPushMatrix(); /*save the current projection*/
glLoadldentity();
glOrtho(...); [*set up for displaying help*/
display_the_help();

glPopMatrix();

Note that you'd probably have to also change the modelview matrix appropriately.

OpenGL Programming Guide — Chapter 3, Viewing — 34

Advanced

If you know enough mathematics, you can create custom projection matrices that perform arbitrary
projective transformations. For example, the OpenGL and its Utility Library have no built—in
mechanism for two—point perspective. If you were trying to emulate the drawings in drafting texts,
you might need such a projection matrix.

Additional Clipping Planes

In addition to the six clipping planes of the viewing volume (left, right, bottom, top, near, and far),
you can define up to six additional clipping planes to further restrict the viewing volume, as shown
Figure 3—-22This is useful for removing extraneous objects in a $¢émeexample, if you want to
display a cutaway view of an object.

Each plane is specified by the coefficients of its equationB&+Cz+D = 0. The clipping planes are
automatically transformed appropriately by modeling and viewing transformations. The clipping
volume becomes the intersection of the viewing volume andhtitispacesiefined by the additional
clipping planes. Remember that polygons that get clipped automatically have their edges
reconstructed appropriately by OpenGL.

Figure 3-22 Additional Clipping Planes and the Viewing Volume

void gIClipPlandGLenunmplane, const GLdoubl&equation;
Defines a clipping plane. Theguationargument points to the four coefficients of the plane
equation, A+By+Cz+D = 0. All points with eye coordinatesdx/e Ze, We) that satisfy (AB C

D)M-1 (% YezeWe)T >= 0 lie in the half-space defined by the plane, where M is the current

modelview matrix at the tingiClipPlane()is called. All points not in this half-space are clipped
away. Theplaneargument is GL_CLIP_PLANEwherei is an integer specifying which of the
available clipping planes to definieis a number between 0 and one less than the maximum
number of additional clipping planes.

You need to enable each additional clipping plane you define:
glEnable(GL_CLIP_PLANE i);

You can disable a plane with

glDisable(GL_CLIP_PLANE i);

All implementations of OpenGL must support at least six additional clipping planes, although some
implementations may allow more. You can gigetintegerv(with GL_MAX_CLIP_PLANES to

OpenGL Programming Guide — Chapter 3, Viewing — 35

find how many clipping planes are supported.

Note: Clipping performed as a result giClipPlane()is done in eye coordinates, not in clip
coordinates. This difference is noticeable if the projection matrix is singular (that is, a real projectio
matrix that flattens three—dimensional coordinates to two—dimensional ones). Clipping performed i
eye coordinates continues to take place in three dimensions even when the projection matrix is
singular.

A Clipping Plane Code Example

Example 3-Benders a wireframe sphere with two clipping planes that slice away three—quarters of
the original sphere, as shownRigure 3-23

Figure 3-23 Clipped Wireframe Sphere

Example 3-5 Wireframe Sphere with Two Clipping Planes: clip.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

void init(void)

{
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel (GL_FLAT);

}

void display(void)

{
GLdouble egn[4] = {0.0, 1.0, 0.0, 0.0};
GLdouble egn2[4] = {1.0, 0.0, 0.0, 0.0}

glClear(GL_COLOR_BUFFER_BIT);
glColor3f (1.0, 1.0, 1.0);
glPushMatrix();

glTranslatef (0.0, 0.0, —-5.0);

f* clip lower half ——y <0 *

glClipPlane (GL_CLIP_PLANEOQ, eqgn);
glEnable (GL_CLIP_PLANEO);

OpenGL Programming Guide — Chapter 3, Viewing — 36

/¥ clip left half -—x< 0 */
glClipPlane (GL_CLIP_PLANEL1, eqn2);
glEnable (GL_CLIP_PLANEL);

glRotatef (90.0, 1.0, 0.0, 0.0);
glutWireSphere(1.0, 20, 16);
glPopMatrix();

glFlush ();

void reshape (int w, int h)

{
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
gIMatrixMode (GL_PROJECTION);
glLoadldentity ();
gluPerspective(60.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);
glMatrixMode (GL_MODELVIEW);

int main(int argc, char** argv)

{
glutlnit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutinitWindowsSize (500, 500);
glutinitWindowPosition (100, 100);
glutCreateWindow (argv[0]);
init ();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutMainLoop();
return O;

Try This
Try changing the coefficients that describe the clipping planEsample 3-5

Try calling a modeling transformation, suchgiRotate*() to affectglClipPlane() Make the
clipping plane move independently of the objects in the scene.

Examples of Composing Several Transformations

This section demonstrates how to combine several transformations to achieve a particular result. 1
two examples discussed are a solar system, in which objects need to rotate on their axes as well ¢
orbit around each other, and a robot arm, which has several joints that effectively transform
coordinate systems as they move relative to each other.

Building a Solar System

OpenGL Programming Guide — Chapter 3, Viewing — 37

The program described in this section draws a simple solar system with a planet and a sun, both u
the same sphere—drawing routine. To write this program, you needgi®atse*() for the

revolution of the planet around the sun and for the rotation of the planet around its own axis. You
also need|Translate*()to move the planet out to its orbit, away from the origin of the solar system.
Remember that you can specify the desired size of the two spheres by supplying the appropriate
arguments for thglutWireSphere(Joutine.

To draw the solar system, you first want to set up a projection and a viewing transformation. For th
example gluPerspective(@ndgluLookAt()are used.

Drawing the sun is straightforward, since it should be located at the origin of the grand, fixed
coordinate system, which is where the sphere routine places it. Thus, drawing the sun doesn’t req
translation; you can uggRotate*()to make the sun rotate about an arbitrary axis. To draw a planet
rotating around the sun, as showrrigure 3—-24requires several modeling transformations. The
planet needs to rotate about its own axis once a day. And once a year, the planet completes one
revolution around the sun.

S T

p .-'-'"-i—- qﬂ..'“‘x.x ﬂ-\ Rotate (Day)

L] —_

" / =
aun | Translate \“—"'X d__..--*'I
_— A S L
o , Ve Revalva (Year)
g

Figure 3—-24 Planet and Sun

To determine the order of modeling transformations, visualize what happens to the local coordinat
system. An initiabIRotate*() rotates the local coordinate system that initially coincides with the
grand coordinate system. NegtTranslate*()moves the local coordinate system to a position on the
planet’s orbit; the distance moved should equal the radius of the orbit. Thus, thgliRiialte*()

actually determines where along the orbit the planet is (or what time of year it is).

A secondglRotate*() rotates the local coordinate system around the local axes, thus determining thi
time of day for the planet. Once you've issued all these transformation commands, the planet can
drawn.

In summary, these are the OpenGL commands to draw the sun and planet; the full program is sho
in Example 3-6

glPushMatrix();

glutwireSphere(1.0, 20, 16); /* draw sun */
glRotatef ((GLfloat) year, 0.0, 1.0, 0.0);

glTranslatef (2.0, 0.0, 0.0);

glRotatef ((GLfloat) day, 0.0, 1.0, 0.0);
glutWireSphere(0.2, 10, 8); /* draw smaller planet */
glPopMatrix();

Example 3-6 Planetary System: planet.c

OpenGL Programming Guide — Chapter 3, Viewing — 38

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

static int year = 0, day = 0;

void init(void)

{
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel (GL_FLAT);

}

void display(void)

{
glClear (GL_COLOR_BUFFER_BIT);
glColor3f (1.0, 1.0, 1.0);

glPushMatrix();

glutWireSphere(1.0, 20, 16); /* draw sun */
glRotatef ((GLfloat) year, 0.0, 1.0, 0.0);

glTranslatef (2.0, 0.0, 0.0);

glRotatef ((GLfloat) day, 0.0, 1.0, 0.0);
glutWireSphere(0.2, 10, 8); /* draw smaller planet */
glPopMatrix();

glutSwapBuffers();

void reshape (int w, int h)
{
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadldentity ();
gluPerspective(60.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();
gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

void keyboard (unsigned char key, int x, int y)
{
switch (key) {
case ‘d"
day = (day + 10) % 360;
glutPostRedisplay();
break;
case ‘D"
day = (day - 10) % 360;

OpenGL Programming Guide — Chapter 3, Viewing — 39

glutPostRedisplay();
break;

case 'y’
year = (year + 5) % 360;
glutPostRedisplay();
break;

case ‘Y"
year = (year — 5) % 360;
glutPostRedisplay();
break;

default:
break;

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutlnitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
glutinitWindowsSize (500, 500);
glutinitWindowPosition (100, 100);
glutCreateWindow (argv[0]);
init ();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutkeyboardFunc(keyboard);
glutMainLoop();
return O;

Try This

Try adding a moon to the planet. Or try several moons and additional planets. Hint: Use
glPushMatrix()andglPopMatrix() to save and restore the position and orientation of the
coordinate system at appropriate moments. If you're going to draw several moons around a
planet, you need to save the coordinate system prior to positioning each moon and restore the
coordinate system after each moon is drawn.

Try tilting the planet’s axis.

Building an Articulated Robot Arm

This section discusses a program that creates an articulated robot arm with two or more segments
The arm should be connected with pivot points at the shoulder, elbow, or otheFHigints.3-25
shows a single joint of such an arm.

OpenGL Programming Guide — Chapter 3, Viewing — 40

Figure 3—-25 Robot Arm

You can use a scaled cube as a segment of the robot arm, but first you must call the appropriate
modeling transformations to orient each segment. Since the origin of the local coordinate system it
initially at the center of the cube, you need to move the local coordinate system to one edge of the
cube. Otherwise, the cube rotates about its center rather than the pivot point.

After you callgiTranslate*()to establish the pivot point agiRotate*()to pivot the cube, translate
back to the center of the cube. Then the cube is scaled (flattened and widened) before it is drawn.
glPushMatrix()andglPopMatrix() restrict the effect ajlScale*(). Here’s what your code might look
like for this first segment of the arm (the entire program is showxample 3-)

glTranslatef (-1.0, 0.0, 0.0);

glRotatef ((GLfloat) shoulder, 0.0, 0.0, 1.0);
glTranslatef (1.0, 0.0, 0.0);

glPushMatrix();

glScalef (2.0, 0.4, 1.0);

glutWireCube (1.0);

glPopMatrix();

To build a second segment, you need to move the local coordinate system to the next pivot point.
Since the coordinate system has previously been rotated;akis is already oriented along the

length of the rotated arm. Therefore, translating along-thgis moves the local coordinate system to
the next pivot point. Once it's at that pivot point, you can use the same code to draw the second
segment as you used for the first one. This can be continued for an indefinite number of segments
(shoulder, elbow, wrist, fingers).

glTranslatef (1.0, 0.0, 0.0);

glRotatef ((GLfloat) elbow, 0.0, 0.0, 1.0);
glTranslatef (1.0, 0.0, 0.0);
glPushMatrix();

glScalef (2.0, 0.4, 1.0);

glutWireCube (1.0);

glPopMatrix();

Example 3-7 Robot Arm: robot.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

static int shoulder = 0, elbow = 0;

void init(void)

OpenGL Programming Guide — Chapter 3, Viewing — 41

{
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel (GL_FLAT);

}

void display(void)

{
glClear (GL_COLOR_BUFFER_BIT);
glPushMatrix();
glTranslatef (-1.0, 0.0, 0.0);
glRotatef ((GLfloat) shoulder, 0.0, 0.0, 1.0);
glTranslatef (1.0, 0.0, 0.0);
glPushMatrix();
glScalef (2.0, 0.4, 1.0);
glutWireCube (1.0);
glPopMatrix();

glTranslatef (1.0, 0.0, 0.0);

glRotatef ((GLfloat) elbow, 0.0, 0.0, 1.0);
glTranslatef (1.0, 0.0, 0.0);
glPushMatrix();

glScalef (2.0, 0.4, 1.0);

glutWireCube (1.0);

glPopMatrix();

glPopMatrix();
glutSwapBuffers();

void reshape (int w, int h)
{
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadldentity ();
gluPerspective(65.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();
glTranslatef (0.0, 0.0, —=5.0);

void keyboard (unsigned char key, int x, int y)
{
switch (key) {
case ‘s’ [* s key rotates at shoulder */
shoulder = (shoulder + 5) % 360;
glutPostRedisplay();
break;

OpenGL Programming Guide — Chapter 3, Viewing — 42

case ‘S"
shoulder = (shoulder - 5) % 360;
glutPostRedisplay();
break;

case ‘e". /* e key rotates at elbow */
elbow = (elbow + 5) % 360;
glutPostRedisplay();
break;

case ‘E"
elbow = (elbow - 5) % 360;
glutPostRedisplay();
break;

default:
break;

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
glutinitWindowsSize (500, 500);
glutinitWindowPosition (100, 100);
glutCreateWindow (argv[0]);
init ();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutkeyboardFunc(keyboard);
glutMainLoop();
return O;

Try This
Modify Example 3—-% add additional segments onto the robot arm.
Modify Example 3-% add additional segments at the same position. For example, give the
robot arm several "fingers" at the wrist, as showhigure 3-26Hint: UseglPushMatrix()and
glPopMatrix() to save and restore the position and orientation of the coordinate system at the

wrist. If you're going to draw fingers at the wrist, you need to save the current matrix prior to
positioning each finger and restore the current matrix after each finger is drawn.

OpenGL Programming Guide — Chapter 3, Viewing — 43

Figure 3—-26 Robot Arm with Fingers

Reversing or Mimicking Transformations

The geometric processing pipeline is very good at using viewing and projection matrices and a
viewport for clipping to transform the world (or object) coordinates of a vertex into window (or
screen) coordinates. However, there are situations in which you want to reverse that process. A
common situation is when an application user utilizes the mouse to choose a location in three
dimensions. The mouse returns only a two—dimensional value, which is the screen location of the
cursor. Therefore, the application will have to reverse the transformation process to determine fron
where in three—dimensional space this screen location originated.

The Utility Library routinegluUnProject()performs this reversal of the transformations. Given the
three—dimensional window coordinates for a location and all the transformations that affected then
gluUnProject()returns the world coordinates from where it originated.

int gluUnProjec{GLdoublewinx, GLdoublewiny, GLdoublewninz const GLdoublenodelMatrix[16],
const GLdoublgrojMatrix[16], const GLintviewport[4], GLdouble*objx, GLdoubleobjy,
GLdouble*obj2);
Map the specified window coordinategir{x, winy, winyinto object coordinates, using
transformations defined by a modelview matmo¢lelMatriy, projection matrix grojMatrix),
and viewportyiewpor). The resulting object coordinates are returneaiijx, objy,andobjz
The function returns GL_TRUE, indicating success, or GL_FALSE, indicating failure (such as
an noninvertible matrix). This operation does not attempt to clip the coordinates to the viewpor
or eliminate depth values that fall outsidegtibepthRange()

There are inherent difficulties in trying to reverse the transformation process. A two—dimensional
screen location could have originated from anywhere on an entire line in three—dimensional space
disambiguate the resuffluUnProject()requires that a window depth coordinaténf) be provided

and thatvinz be specified in terms gfiDepthRange()For the default values gfDepthRange()

winzat 0.0 will request the world coordinates of the transformed point at the near clipping plane,
while winzat 1.0 will request the point at the far clipping plane.

Example 3—8emonstrategluUnProject()by reading the mouse position and determining the
three—dimensional points at the near and far clipping planes from which it was transformed. The
computed world coordinates are printed to standard output, but the rendered window itself is just
black.

Example 3-8 Reversing the Geometric Processing Pipeline: unproject.c

OpenGL Programming Guide — Chapter 3, Viewing — 44

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

void display(void)

{
glClear(GL_COLOR_BUFFER_BIT);
glFlush();

}

void reshape(int w, int h)

{
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
gIMatrixMode(GL_PROJECTION);
glLoadldentity();
gluPerspective (45.0, (GLfloat) w/(GLfloat) h, 1.0, 100.0);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();

void mouse(int button, int state, int x, inty)
{
GLint viewport[4];
GLdouble mvmatrix[16], projmatrix[16];
GLint realy; /* OpenGL y coordinate position */
GLdouble wx, wy, wz; /* returned world x, y, z coords */

switch (button) {
case GLUT_LEFT_BUTTON:
if (state == GLUT_DOWN) {
glGetintegerv (GL_VIEWPORT, viewport);
glGetDoublev (GL_MODELVIEW_MATRIX, mvmatrix);
glGetDoublev (GL_PROJECTION_MATRIX, projmatrix);
/* note viewport[3] is height of window in pixels */
realy = viewport[3] - (GLint) y — 1;
printf ("Coordinates at cursor are (%4d, %4d)\n",
X, realy);
gluUnProject ((GLdouble) x, (GLdouble) realy, 0.0,
mvmatrix, projmatrix, viewport, &wx, &wy, &wz);
printf ("World coords at z=0.0 are (%f, %f, %f)\n",
WX, Wy, Wz);
gluUnProject ((GLdouble) x, (GLdouble) realy, 1.0,
mvmatrix, projmatrix, viewport, &wx, &wy, &wz);
printf ("World coords at z=1.0 are (%f, %f, %f)\n",

OpenGL Programming Guide — Chapter 3, Viewing — 45

WX, WY, WZ);
}
break;
case GLUT_RIGHT _BUTTON:
if (state == GLUT_DOWN)
exit(0);
break;
default:
break;

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutinitWindowsSize (500, 500);
glutinitWindowPosition (100, 100);
glutCreateWindow (argv[0]);
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutMouseFunc(mouse);
glutMainLoop();
return 0;

}

gluProject()is another Utility Library routine, which is relatedgluUnProject()gluProject()
mimics the actions of the transformation pipeline. Given three—dimensional world coordinates and
the transformations that affect theghyProject() returns the transformed window coordinates.

int gluProjectGLdoubleobjx, GLdoubleobjy, GLdoubleobjz const GLdoublenodelMatrix[16],
const GLdoubl@rojMatrix[16], const GLintviewport[4], GLdouble*winx, GLdouble*winy,
GLdouble*winz);
Map the specified object coordinatexbjx, objy, objzinto window coordinates, using
transformations defined by a modelview matntrofielMatri®, projection matrix projMatrix),
and viewportyiewpor). The resulting window coordinates are returneavinx, winy,andwinz
The function returns GL_TRUE, indicating success, or GL_FALSE, indicating failure.

OpenGL Programming Guide — Chapter 3, Viewing — 46

