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ABSTRACT
Programs with floating-point computations are often derived
from mathematical models or designed with the semantics
of the real numbers in mind. However, for a given input,
the computed path with floating-point numbers may dif-
fer from the path corresponding to the same computation
with real numbers. State-of-the-art tools compute an over-
approximation of the error introduced by floating-point oper-
ations with respect to the same sequence of operations in an
idealized semantics of real numbers. Thus, totally inappropri-
ate behaviors of a program may be dreaded but the developer
does not know whether these behaviors will actually occur,
or not. We introduce here a new constraint-based approach
that searches for input values hitting the part of the over-
approximation where errors due to floating-point arithmetic
would lead to inappropriate behaviors. Preliminary results of
experiments on small programs with classical floating-point
errors are very encouraging.
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1. INTRODUCTION
In numerous applications, programs with floating-point

computations are derived from mathematical models over
the real numbers. However, for some values of the input
variables, the result of a sequence of operations over the
floating-point numbers can be significantly different from
calculations in an idealized semantics of the real numbers.
As a consequence, computed paths with floating-point num-
bers may differ from the paths corresponding to the same
computation with real numbers. Identifying these values is a
crucial issue for programs controlling critical systems.

Abstract interpretation based error analysis [3, 6, 9] of
finite precision implementations compute an over-approxima-
tion of the errors due to floating-point operations. Inappro-
priate behaviors of a program may thus be dreaded but we
cannot know whether the predicted unstable behaviors will
occur with actual data. This problem is depicted in Fig. 1
where [xR, xR] stands for the domain of variable x over R,
the set of real numbers; and [xF, xF] stands for the domain
of variable x in the over-approximation computed over F,
the set of floating-point numbers. In practice, the range of a
sequence of operations over the real numbers can often be
determined, whether by calculation or from physical limits.
A tolerance ε around this range is usually accepted to take



into account approximation errors, e.g. measurement, statis-
tical, or even floating-point arithmetic errors. In other words,
this tolerance — specified by the user — defines an accept-
able loss of accuracy between the value computed over the
floating-point numbers and the value calculated over the real
numbers. However, values outside the interval [xR−ε, xR +ε]
can lead a program to misbehave, e.g. take a wrong branch
in the control flow. The values of an approximation over F
that intersect with a forbidden interval are what we call a
suspicious interval.

The problem we address in this paper consists in verifying
whether a program can actually produce values inside the
suspicious intervals [xF, xR − ε] and ]xR + ε, xF]. To handle
this problem, we introduce a new constraint-based approach
that generates test cases hitting the suspicious intervals in
programs with floating-point computations. Our framework
reduces this test case generation problem to a constraint-
solving problem over the floating-point numbers where the
domain of a critical decision variable has been shrunk to
a suspicious interval. The generated test cases not only
demonstrate that wrong paths can actually be executed but
they provide also valuable information for debugging. If no
test case can be generated, the suspicious interval can be
discarded.

2. FRAMEWORK FOR TEST CASES GEN-
ERATION

The kernel of our framework is FPCS [14, 13, 1, 12], a
constraint solver over floating-point constraints; that’s to say
a symbolic execution approach for floating-point problems
which combines interval propagation with explicit search
for satisfiable floating-point assignments. FPCS is used
inside the CPBPV [5] bounded model checking framework.
CPBPV FP stands for the adaptation of CPBPV for gener-
ating test cases hitting the suspicious intervals in programs
with floating-point computations.

The inputs of CPBPV FP are :

• P , an annotated program;

• x, a variable used in a critical test; and

• [xF , xF ], a suspicious interval for x.

Annotations of P specify the range of the input variables
of P as well as the suspicious interval for x. Usually, these
annotations are posted just before a critical test using variable
x.

To compute the suspicious interval for x, we approximate
the domain of x over the real numbers by [xR, xR], and over the
floating-point numbers by ]xF, xF]. The suspicious intervals
for x are ]xF, xR − ε] and ]xR + ε, xF], where ε is a tolerance
specified by the user.

These approximations are mainly computed with rAiCp [15],
a hybrid system that combines abstract interpretation and
constraint programming techniques in a single static and au-
tomatic analysis. rAiCp is substantially more precise than
state-of-the-art AI analyzers and CP solvers used separately.
Of course, computer algebra systems or interval solvers can
also help for computing these approximations. Safe approx-
imations computed with different tools can even be inter-
sected.
CPBPV FP performs first some pre-processing: P is

transformed into DSA-like form.1 Loops are handled in
CPBPV with standard unfolding and abstraction tech-
niques: if the program contains loops, CPBPV FP unfolds
loops k times.2 So, there are no more loops in the program
when we start the constraint generation process. Standard
slicing operations are also performed to reduce the size of
the control flow graph.

In a second step, CPBPV FP searches for executable
paths reaching suspicious interval for x. For each of these
paths, the collected constraints are sent to FPCS, which
solves the corresponding constraint systems over the floating
point numbers and returns either a satisfiable instantiation
of the input variables of P or an empty set. As said before,
FPCS [14, 13, 1, 12] is a constraint solver designed to solve a
set of constraints over floating-point numbers without losing
any solution. It uses 2B-consistency3 along with projection
functions adapted to floating-point arithmetic [13, 1] to filter
constraints over the floating-point numbers. FPCS provides
also stronger consistencies like 3B-consistencies4, which allow
better filtering results. FPCS allows one to reason correctly
over the floating-point numbers with respect to the floating-
point arithmetic.
CPBPV FP ends up with one of the following results:

• A test case showing that P can produce a suspicious
value for x;

• A proof that no test case reaching the suspicious interval
can be generated: this is the case if the loops in P
cannot be unfolded beyond the bound k (See [5] for
details on bounded unfoldings) ;

• An inconclusive answer: no test case could be generated
but the loops in P could be unfolded beyond the bound
k. In other words, the process is incomplete and we
cannot conclude whether P may produce a suspicious
value.

3. PRELIMINARY EXPERIMENTS
We experimented with CPBPV FP on two cases of floating-

point arithmetic pitfalls: programs with cancellation and
absorption phenomena.5

All experiments were done on an Intel Core 2 Duo at 2.8
GHz with 4 GB of memory running 64-bit Linux. We assume

1DSA stands for Dynamic Single Assignment. In DSA-like
form, all variables are assigned exactly once in each execution
path.
2k is usually incremented until a counterexample is found
or until the number of time units is large enough for the
application.
32B-consistency [11] states a local property on the bounds
of the domains of a variable at a single constraint level.
Informally, the domain of variable x is 2B-consistent if, for
any constraint c, there exists at least one value in the domains
of all other variables such that c holds when x is set to the
upper or lower bound of its domain.
43B-consistency [11] checks whether 2B-Consistency can be
enforced when the domain of a variable is reduced to the
value of one of its bounds in the whole system.
5Absorption in an addition occurs when adding two numbers
of very different order of magnitude, and the result is the
value of the biggest number, i.e., when x + y with y 6= 0
yields x. Cancellation occurs in s− a when s is so close to a
that the subtraction cancels most of the significant digits of
s and a.
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Figure 1: Can the program hit a forbidden zone over the floating-point numbers?

1 /∗ Pre−condition : a ≥ b and a ≥ c ∗/
2 float heron(float a, float b, float c) {
3 float s , squared area;
4

5 squared area = 0.0f;
6 if (a <= b + c) {
7 s = (a + b + c) / 2.0f;
8 squared area = s∗(s−a)∗(s−b)∗(s−c);
9 }

10 return sqrt(squared area);
11 }

Figure 2: Program Heron

1 /∗ Pre−condition : a ≥ b and b ≥ c ∗/
2 float optimized heron(float a, float b, float c) {
3 float squared area;
4

5 squared area = 0.0f;
6 if (a <= b + c) {
7 squared area = ((a+(b+c))∗(c−(a−b))
8 ∗(c+(a−b))∗(a+(b−c)))/16.0f;
9 }

10 return sqrt(squared area);
11 }

Figure 3: Optimized Heron

C programs handling IEEE 754 floating-point arithmetic,
intended to be compiled with GCC without any optimization
option and run on an x86 64 architecture managed by a
64-bit Linux operating system. Rounding mode was set to
the nearest, i.e., where ties round to the nearest even digit
in the required position.

We first describe the programs, and then we compare the
performance with existing tools.

3.1 Program Heron
The program Heron in Fig. 2 computes the area of a tri-

angle from the lengths of its sides a, b, and c; a being the
longest side of the triangle. It use Heron’s formula:√

s ∗ (s− a) ∗ (s− b) ∗ (s− c)

where

s = (a+ b+ c)/2.

The test of line 6 ensures that the given lengths form a valid
triangle.

Suppose that the input domains are:

• a ∈ [5, 10];

• b, c ∈ [0, 5].

1 float slope(float x0, float h) {
2 float x1 = x0 + h;
3 float x2 = x0 − h;
4 float fx1 = x1∗x1;
5 float fx2 = x2∗x2;
6 float res = (fx1 − fx2) / (2.0∗h);
7 return res;
8 }

Figure 4: Program slope

1 float polynomial(float a, float b, float c) {
2 float poly = (a∗a + b + 1e−5f) ∗ c;
3 return poly;
4 }

Figure 5: Programs polynomial

Over the real numbers, s is greater or equal than any of the
sides of the triangle and squared_area can neither be negative
nor greater than 156.25 since the triangle area is maximized
for a right triangle with b = c = 5 and a = 5

√
2. Value

analysis tools Fluctuat [6] and rAiCp[15] approximate the
domain of squared_area to the interval [−1262.21, 979.01].
Since this domain is an over-approximation, we do not
know whether input values leading to squared_area < 0 or
squared_area > 156.25 actually exist.

With a tolerance ε of 10−5, the suspicious intervals for
squared_area are [−1262.21,−10−5] and [156.25001, 979.01].
CPBPV FP managed to generate test cases for both inter-
vals:

• a = 5.517474, b = 4.7105823, c = 0.8068917, and
squared_area = −1.0000001 · 10−5 for suspicious inter-
val [−1262.21,−10−5];

• a = 7.072597, b = c = 5, and squared_area = 156.25003
for suspicious interval [156.25001, 979.01].

CPBPV FP could also prove the absence of test cases for a
tolerance ε = 10−3 with squared_area > 156.25 + ε.

To limit the loss of accuracy due to cancellation [8], line 8
of this program can be rewritten in the following way :
squared_area = ((a+(b+c))*(c-(a-b))*(c+(a-b))

* (a+(b-v)))/16.0f;

On the optimized version of Heron (Fig. 3), CPBPV FP
still found a test case

• a = 7.0755463,

• b = 4.350216, c = 2.72533,

• squared_area equals −1.0000001 · 10−5.



Name Condition FPCS CDFL CBMC CPBPV FP sol?

slope with res < 26.0f − 1.0f 0.020s 2.014s 1.548s 0.624s yes
h ∈ [10−6, 10−3] res > 26.0f + 1.0f 0.022s 1.599s 0.653s 0.603s yes

res < 26.0f − 10.0f 0.007s 0.715s 1.108s 0.588s no
res > 26.0f + 10.0f 0.007s 1.025s 1.080s 0.593s no

slope with res < 26.0f − 1.0f 0.010s 0.299s 0.241s 0.593s yes
h ∈ [10−9, 10−6] res > 26.0f + 1.0f 0.009s 0.333s 0.246s 0.608s yes

res < 26.0f − 10.0f 0.011s 0.291s 0.224s 0.582s yes
res > 26.0f + 10.0f 0.003s 0.342s 0.436s 0.594s yes

heron squared aera < 10−5
f 0.655s 3.874s 0.280s 1.109s yes

squared area > 156.25f + 10−5
f 1.412s > 1200s 34.512s 2.294s yes

optimized_heron squared area < 10−5
f 0.262s 7.618s 0.932s 0.982s yes

squared area > 156.25f + 10−5
f 37.352s > 1200s > 1200s 95.890s no

polynomial r < 1000000000.01f − 10−3
f 0.006s 0.170s 0.295s 0.605s yes

simple_interpolator res < 10−5
f 0.017s 0.296s 0.264s 0.613s yes

simple_square S > 1.453125 0.011s −− 1.079s 0.608s no

Table 1: Time required by each solver to solve each problem

when squared_area is set to the interval [−1262.21,−10−5].
CPBPV FP did also prove that no test case exists with
squared_area ∈ [156.25001, 979.01].

3.2 Program slope
This program approximates the derivative of a function at

a given point x0 by computing the slope of a nearby secant
line with a finite difference quotient:

f ′(x0) ≈ f(x0 + h)− f(x0 − h)

2h

Over the real numbers, the smaller h is, the more accurate
the formula is. The program slope in Fig. 4 implements this
formula with the square function f(x) = x2.

For function f(x) = x2 the derivative is given by

f ′(x) = 2x

which yields exactly 26 for x = 13. Over the floats, Fluc-
tuat and rAiCp approximates the return value of the slope
program to the interval [0, 25943] when h ∈ [10−6, 10−3] and
x0 = 13.
CPBPV FP found test cases for the different suspicious

intervals with ε = 1:

• h = 7.934571 · 10−6 and res = 24.999998 when res is
restricted to interval [0, 25]

• h = 2.5324175 · 10−6 and res = 30.126923 when res is
restricted to interval ]27, 25943].

CPBPV FP proved also that no test case exists with ε = 10.
The situation gets even worse if we try to increase the

accuracy of the formula by decreasing the value of h. For
an ε = 10 and h ∈ [10−6, 10−3], CPBPV FP proved that no
test case exists whereas for h ∈ [10−9, 10−6]. CPBPV FP
generated test cases for the different suspicious intervals.

The bad accuracy of program slope comes from a catas-
trophic cancellation phenomenon: fx1 and fx2 are very close
numbers and the subtraction cancels the most significant
digits leaving only the digits coming from the rounding of
the previous operations.

3.3 Program polynomial
The program polynomial (Fig. 5) computes the polynomial

(a2 + b+ 10−5) ∗ c

and illustrates an absorption phenomenon.
For input domains a ∈ [103, 104], b ∈ [0, 1] and c ∈

[103, 104], the minimum value of the polynomial over the
real numbers is equal to 1000000000.01. CPBPV FP shows
that even with a tolerance of ε = 10−3, there are input
values for which the program computes a result less than
1000000000.01− ε.

3.4 Computation times
Solving times are given in Table 1.

Programs simple_interpolator and simple_square are two
benchmarks extracted from [9]: the first benchmark computes
an interpolator, affine by sub-intervals; the second is a rewrite
of a square root function used in an industrial context. First
column gives the name of the program while the second
column gives the condition that is checked. Columns 3 to
6 give the time required to solve the problem by the solver
which name the column. Column 7 tells whether the problem
has a solution or not. Column FPCS specifies only how
much time is spent in the constraint solver. Note that values
in column CPBPV FP include the corresponding time of
Column FPCS.
CBMC [4] and CDFL [7] are two state of art software
bounded model checkers based on SAT solvers that are able
to deal with floating-point computations.

On slope and polynomial, the performance of CBMC and
CDFL are very similar to the one of CPBPV FP: all these
systems required little time for finding test cases for these
two programs.

Arithmetic expressions are a bit more complex in program
heron than in the other benchmarks. CPBPV FP found
nevertheless solutions in reasonable time. But CBMC and
CDFL could handle neither the initial nor the optimized
version of program heron within a timeout of 20 minutes.



4. DISCUSSION
These preliminary results of experiments are very encour-

aging: they show that our approach is effective for generating
test cases for suspicious values outside the range of accept-
able values on on small programs with classical floating-point
errors, and thus, to determine whether critical computations
are unstable or not.

Performances of FPCS are especially encouraging. The
advantage of CP is that it provides an efficient framework
for representing and handling constraints over floating-point
numbers. SAT solvers often use bitwise representations of
numerical operations, which may be very expensive (e.g.,
thousands of variables for one equation in CDFL). Another
strong point of CP is its refutation capabilities on constraint
systems over the floating point numbers. Of course, experi-
ments on more significant benchmarks and on real applica-
tions are still necessary to evaluate the full capabilities and
limits of CPBPV FP.

A new abstract-interpretation based robustness analysis
of finite precision implementations has recently been pro-
posed [9] for sound rounding error propagation in a given
path in presence of unstable tests. Brain et al [10, 2] have
recently introduced a bit-precise decision procedure for the
theory of point arithmetic. The core of their approach is a
generalisation of the conflict-driven clause-learning algorithm
used in modern SAT solver. Their technique is significantly
faster than a bit-vector encoding approach. A close connec-
tion between our floating-point solvers and the two above
mentioned approaches is certainly worth exploring.
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