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Abstract. The modal intervals theory deals with quantified proposi-
tions in AE-form, i.e. universal quantifiers precede existential ones, where
variables are quantified over continuous domains and with equality con-
straints. It allows to manipulate such quantified propositions computing
only with bounds of intervals. A simpler formulation of this theory is
presented. Thanks to this new framework, a mean-value extension to
generalized intervals (intervals whose bounds are not constrained to be
ordered) is defined. Its application to the validation of quantified propo-
sitions is illustrated.

1 Introduction

Classical intervals are used in many situations to rigorously compute with inter-
val domains instead of reals. This usually leads to outer approximations of sets
defined by existentially quantified constraints (see [20, 13, 5]). A fundamental
concept of the classical intervals theory is the extension of continuous functions
to intervals. Such extensions allow to compute outer approximation of func-
tions ranges over boxes3. Some widely used interval extensions are the natural
extension and the mean-value extension. The former consists in replacing real
operations by their interval counterparts in the expression of the function. The
latter consists in linearizing the original function before bounding its range using
the natural extension (see [4]).

Example 1. Let us consider the function f(x) = x2 − x and the interval [2, 3].
Its natural extension raises f([2, 3]) = [2, 3]2− [2, 3] = [1, 7] while its mean-value
extension raises f(2.5) + f ′([2, 3]) × ([2, 3] − 2.5) = [0.75, 6.75]. Both computed
intervals contain the range of f over [2, 3] which is {f(x) | x ∈ [2, 3]} = [2, 6].

One main drawback of interval extensions is that they compute supersets of
function ranges which can be very pessimistic. In general, the larger interval
arguments, the bigger the overestimation of the range is. So, interval extensions
3 Cartesian product of intervals.



are likely to be used with small enough interval arguments, this situation being
usually reached during a bisection algorithm. In this situation, the mean-value
extension has an important advantage on the natural extension as it is generally
much more accurate when applied to small enough intervals: formally, the mean-
value extension has a quadratic order of convergence while the natural extension
has a linear order of convergence (see [4]).

Alternatively one can interpret interval extensions using quantified proposi-
tions. For example, the interpretation {f(x) | x ∈ [2, 3]} ⊆ [1, 7] of Example 1
can be equivalently stated by the following quantified proposition:(

∀x ∈ [2, 3]
)(
∃z ∈ [1, 7]

)(
f(x) = z

)
.

Starting from this latter interpretation of interval extensions, the modal inter-
vals theory (see [11, 12]) succeeded in providing richer interpretations involving
more general quantifications, these modal interpretations having promising ap-
plications (see [17–19]). As in the context of classical intervals, the pessimism
related to the modal evaluation of a function is a central problem. Still a lot of
work has to be conducted so as to deal with realistic situations (see [19]). A step
in this direction would be a mean-value extension like linearization process for
the modal evaluation of a function.

In this paper, we present a simpler formulation of the modal intervals theory
using only generalized intervals (intervals whose bounds are not constrained to
be ordered). This new formulation of the theory allows to define a mean-value
extension to generalized intervals which is compatible with the richer interpre-
tations of modal interval extensions (for a detailed presentation see [2, 1]). Some
didactic examples are presented illustrating both the underlying mechanisms
and the potential applications.

Notations Following [9], intervals are closed, bounded and nonempty, and in-
terval objects are denoted by boldface letters. The set of intervals is denoted
by IR := {[a, b] | a ∈ R, b ∈ R, a ≤ b}. The set of generalized intervals is de-
noted by KR := {[a, b] | a ∈ R, b ∈ R}. Integral intervals are denoted by [m..n].
We will use the following conventions for vectors of reals, intervals and func-
tions: sets of indices are ordered by the usual lexicographic order and are de-
noted by calligraphic letters. Let E = {e1, . . . , en} be a set of indices, the vector
(xe1 , ..., xen

)T ∈ Rn is denoted by xE . So that the vector (x1, . . . , xn)T is de-
noted by x[1..n]. If no confusion is possible, the usual notation x will be used in
place of x[1..n].

2 Extensions to generalized intervals

In this section, we define generalized interval extensions whose interpretation
generalizes the interpretation of classical interval extensions. This framework
represent a new formulation of the modal intervals theory: the subsections 2.1,
2.2, 2.3 and 2.4 present a new formulation of some central results of the modal
intervals theory while the subsection 2.5 and 2.6 present a new mean-value ex-
tension which was obtained thanks to this new framework.



2.1 Description of the problems to be solved

The problem solved by generalized interval extensions generalizes the problem
solved by classical interval extensions. As mentioned in introduction, the problem
solved by classical interval extensions can be stated in the following way:

Problem 1. Given a continuous function f : Rn −→ R and x ∈ IRn, we want
to compute an interval z ∈ IR that satisfies the quantified proposition(

∀x ∈ x
)(
∃z ∈ z

)(
f(x) = z

)
.

This problem is generalized in the following way:

Problem 2. Given a continuous function f : Rn −→ R, x ∈ IRn and a quantifier
Qxk

for each variable xk we want to compute a quantifier Qz and an interval
z ∈ IR that satisfy the following quantified proposition:(

∀xA ∈ xA
)(

Qzz ∈ z
)(
∃xE ∈ xE

)(
f(x) = z

)
, (1)

where A = {k | Qxk
= ∀} and E = {k | Qxk

= ∃}.
In Problem 2, both A or E may be empty, the quantified proposition (1) being
then easily adapted. Also, the quantifier block

(
Qzz ∈ z

)
is written at the center

of the quantified proposition (1) so that the order AE is kept whatever the
quantifier Qz is.

Example 2. Let us consider f(x) = x1 + x2, x = ([−1, 1], [4, 8]), Qx1 = ∀ and
Qx2 = ∃ so that we want to compute Qz and z which satisfy(

∀x1 ∈ [−1, 1]
)(

Qzz ∈ z
)(
∃x2 ∈ [4, 8]

)(
z = f(x)

)
One can check that Qz = ∀ and z = [5, 7] is a solution to our problem. Trivially,
other weaker solutions can be constructed starting from the latter solution, eg.
Qz = ∀ and z = [5.5, 6.5] because [5.5, 6.5] ⊆ [5, 7], or Qz = ∃ and z = [6.5, 9]
because [6.5, 9] ∩ [5, 7] 6= ∅, or Qz = ∃ and z = [6, 10] because [6, 10] ∩ [5, 7] 6= ∅.
As illustrated by Example 2, two solutions to Problem 2 can be compared in
the following way: let (Q,x) and (Q′,x′) be two such solutions. It is clear that
(Q,x) is more accurate than (Q′,x′) if one of the following conditions is met:

– Q = ∀ and Q′ = ∀ and x ⊇ x′,
– Q = ∃ and Q′ = ∃ and x ⊆ x′,
– Q = ∀ and Q′ = ∃ and x ∩ x′ 6= ∅,

In other cases, the two solutions are not comparable, i.e. they provide comple-
mentary informations.

Remark 1. In the case of vector-valued functions, i.e. f = (f1, . . . , fm), Problem
2 consists in computing m intervals zk and m quantifiers Qzk

. The quantified
proposition to be satisfied is then(

∀xA ∈ xA
)(
∀zA′ ∈ zA′

)(
∃zE′ ∈ zE′

)(
∃xE ∈ xE

)(
f(x) = z

)
,

where A′ = {k | Qzk
= ∀} and E ′ = {k | Qzk

= ∃}. A simplified presentation is
proposed restricting the formal definitions to real-valued functions.



2.2 Generalized intervals and quantifiers

We now restate Problem 2 using the language of generalized intervals. This will
be valuable for many reasons: manipulations of quantified propositions will then
be done computing with generalized intervals, leading to efficient computations.
Furthermore the structure of generalized intervals is strongly related to Problem
2 and will therefore offer useful properties, eg. the comparison of two solutions
of Problem 2 will be related to the inclusion between generalized intervals, some
easy rounding process will be available.

A generalized interval x ∈ KR is an interval whose bounds are not con-
strained to be ordered. For example, [−1, 1] ∈ IR is a proper interval and
[1,−1] ∈ IR is an improper one. So, related to a set of reals {x ∈ R | a ≤ x ≤ b},
one can consider two generalized intervals [a, b] and [b, a]. It will be convenient
to use the operations dual [a, b] = [b, a] and pro [a, b] = [min{a, b},max{a, b}]
to change the proper/improper quality keeping unchanged the underlying set
of reals. An inclusion is defined for generalized intervals using the same formal
expression than in the context of classical intervals: x ⊆ y ⇐⇒ y ≤ x∧ x ≤ y.
For example, [−1, 1] ⊆ [−1.1, 1.1], [1.1,−1.1] ⊆ [1,−1] (the inclusion between
the underlying sets of real is reversed) and [2, 0.9] ⊆ [−1, 1] (the underlying sets
of reals have at least one common point).

Instead of associating both an interval and a quantifier to a variable, we now
associate a generalized interval to a variable. On one hand, given a generalized
interval xk (resp. zk) associated to xk (resp. zk), the domain of xk (resp. zk) will
be pro xk (resp. pro zk). On the other hand, we choose the following convention
to link the proper/improper quality to a quantifier4:

– If xk is proper (xk ≤ xk) then Qk = ∀. If xk is not proper (xk > xk) then
Qk = ∃.

– If z is proper then Q = ∃. If z is not proper then Q = ∀.

We are now in position to reformulate Problem 2 using generalized intervals:

Problem 3. Given a continuous function f : Rn −→ R and x ∈ KRn we want
to compute z ∈ KR such that the following quantified proposition is true:(

∀xP ∈ xP
)(

Qzz ∈ z
)(
∃xI ∈ xI

)(
f(x) = z

)
, (2)

where P = {k | xk ∈ IR}, I = {k | xk /∈ IR} and Qz = ∃ if z ∈ IR and Qz = ∀
if z /∈ IR. Such a generalized interval z is called interpretable w.r.t. f and x—or
shortly (f,x)-interpretable.

So, when all intervals are proper, we retrieve the interpretation of classical inter-
val extensions

(
∀x ∈ x

)(
∃z ∈ z

)(
f(x) = z

)
. When a proper interval is changed

to an improper one, the related quantifier is changed—keeping the quantified
proposition in AE-form.

4 This convention is chosen so as to match the classical interval extensions interpre-
tation when all intervals are proper.



Example 3. From Example 1, [1, 7] and [0.75, 6.75] are (f, [2, 3])-interpretable
(the classical interpretation is retrieved when intervals are proper). From Ex-
ample 2, the intervals [7, 5], [6.5, 5.5], [6.5, 9] and [6, 10] are (+, [−1, 1], [8, 4])-
interpretable.

The (+, [−1, 1], [8, 4])-interpretable intervals of Example 3 are related by the
following inclusions: [7, 5] ⊆ [6.5, 5.5] ⊆ [6.5, 9] ⊆ [6, 10]. We can notice that these
four solutions are ordered by decreasing accuracy. In general, the generalized
intervals inclusion can be used to compare the accuracy of (f,x)-interpretable
intervals: if z and z′ are two (f,x)-interpretable intervals related by z ⊆ z′ then
z is more accurate than z′ (see [2]).

Remark 2. This latter property allows to generalize the rounding process used
in the context of classical interval extensions. Indeed, if a (f,x)-interpretable
interval z has no floating point representation (see [6]), one can compute it with
an outer rounding hence leading to z′ satisfying z′ ⊇ z. So that z′ is also (f,x)-
interpretable (see Example 5 and [11, 2]).

Finally, on the model of the classical intervals theory, we define generalized
interval extensions in the following way:

Definition 1. Let f : Rn −→ R be a continuous function. A generalized interval
function f : KRn −→ KR is a generalized interval extension of f if for any
x ∈ KRn the generalized interval f(x) is (f,x)-interpretable.

2.3 The Kaucher arithmetic

We now define a generalized interval arithmetic which solves Problem 3 in the
simple cases of elementary functions: given an elementary function f : Rn −→ R

and x ∈ KRn, where n = 1 or n = 2 for elementary functions, we define f(x)
as the best5 generalized interval which is (f,x)-interpretable. Thanks to the
simplicity of the elementary functions, we can compute their expressions formally
(see [11, 2]):

– x + y = [x + y,x + y]. Also, x− y = [x− y,x− y].
– If all involved bounds are positive, x×y = [x×y,x×y] (see Table 1 for the

other cases which do not match any more the classical expressions). Also,
x/y = x× (1/y) with 1/y = [1/y, 1/y].

– for continuous one variable functions, pro f(x) = {f(x) | x ∈ pro x} and
both f(x) and x have the same proper/improper quality, eg.

√
x = [

√
x,
√

x]
for x,x ≥ 0.

This arithmetic was already proposed in an other context and is today called
the Kaucher arithmetic (see [8]).

5 The smallest in the sense of the generalized intervals inclusion, i.e. the largest domain
when Q = ∀ and the smallest domain when Q = ∃—see [2] for more details.



Table 1. The Kaucher multiplication

x× y y ∈ P y ∈ Z y ∈ −P y ∈ dual Z

x ∈ P [x y,x y] [x y,x y] [x y,x y] [x y,x y]

x ∈ Z [x y,x y]
[min{x y,x y},
max{x y,x y}] [x y,x y] 0

x ∈ −P [x y,x y] [x y,x y] [x y,x y] [x y,x y]

x ∈ dual Z [x y,x y] 0 [x y,x y]
[max{x y,x y,

min{x y,x y}}]

where P = {x ∈ KR|0 ≤ x ∧ 0 ≤ x}, −P = {x ∈ KR|0 ≥ x ∧ 0 ≥ x},
Z = {x ∈ KR|x ≤ 0 ≤ x} and dual Z = {x ∈ KR|x ≥ 0 ≥ x}.

Example 4. The Kaucher addition [0, 2] + [7, 8] = [7, 10] coincides with the clas-
sical intervals addition and is interpreted in the same way:(

∀x1 ∈ [0, 2]
)(
∀x2 ∈ [7, 8]

)(
∃z ∈ [7, 10]

)(
z = x1 + x2

)
.

The Kaucher addition [0, 2] + [8, 7] = [8, 9] is interpreted as(
∀x1 ∈ [0, 2]

)(
∃z ∈ [8, 9]

)(
∃x2 ∈ [7, 8]

)(
z = x1 + x2

)
,

while the Kaucher addition [0, 2] + [8, 4] = [8, 6] is interpreted as(
∀x1 ∈ [0, 2]

)(
∀z ∈ [6, 8]

)(
∃x2 ∈ [4, 8]

)(
z = x1 + x2

)
.

Example 5. The Kaucher square [2, 3]2 = [4, 9] is interpreted by(
∀x ∈ [2, 3]

)(
∃z ∈ [4, 9]

)(
z = x2

)
.

Notice that an outer rounding of this operation would lead for example to
[3.9, 9.1] ⊇ [2, 3]2 which is still interpretable (the involved domain has been
enlarged by outer rounding). Now [3, 2]2 = [9, 4] is interpreted by(

∀z ∈ [4, 9]
)(
∃x ∈ [2, 3]

)(
z = x2

)
.

In this case, an outer rounding of this operation would lead for example to
[8.9, 4.1] ⊇ [3, 2]2 which is still interpretable (the involved domain has been
retracted by outer rounding because the rounded interval is improper).

2.4 A simplified interpretation of the generalized interval evaluation

Let f(x1, . . . , xn) be an expression for a function f where each variable appears
only once. Then f(x), computed for x ∈ KR

n using the Kaucher arithmetic,
raises an interval which is (f,x)-interpretable. The following example illustrates
this property:



Example 6. Let f be the function whose expression is f(x, y, u) = u(x + y) and
x,u ∈ IR and y ∈ IR (so that Qx = Qu = ∀ and Qy = ∃). Then we compute
z := f(x,y,u), i.e. x + y = t and u× t = z. On one hand, if t ∈ IR then

t = x + y is interpreted by
(
∀x ∈ x

)(
∃t ∈ t

)(
∃y ∈ pro y

)(
t = x + y

)
,

z = u× t is interpreted by
(
∀u ∈ u

)(
∀t ∈ t

)(
Qzz ∈ z

)(
z = u t

)
.

On the other hand, if t ∈ IR then

t = x + y is interpreted by
(
∀x ∈ x

)(
∀t ∈ pro t

)(
∃y ∈ pro y

)(
t = x + y

)
,

z = u× t is interpreted by
(
∀u ∈ u

)(
Qzz ∈ z

)(
∃t ∈ pro t

)(
z = u t

)
.

Finally, in both cases, the following quantified proposition is entailed:(
∀x ∈ x

)(
∀u ∈ u

)(
Qzz ∈ z

)(
∃y ∈ pro y

)(
∃t ∈ pro t

)(
z = u t ∧ t = x + y

)
Therefore, noticing that

(
∃t ∈ pro t

)(
z = u t∧ t = x + y

)
=⇒ z = f(x, y, u), we

come to the conclusion that z is (f,x,y,u)-interpretable.

The argumentation presented in Example 6 is easily generalized to any expression
containing one occurrence of each variable and to any interval arguments. If the
expression contains several occurrences of some variables then constructing a
(f,x)-interpretable interval needs further developments. A generalized interval
natural extension has been defined in [2] in the following way: a new expression
g is built from the expression f by inserting an operation pro before all but one
occurrences of each variable. Then, g(x) is (f,x)-interpretable. The generalized
interval extension g(x) is called a generalized interval natural extension of f
because if all interval arguments are proper then the operations pro has no
influence and the classical interval natural extension is retrieved.

Example 7. Let us consider the function f(x, y) = xy + x(x + y). There are
several ways to insert an operation pro before all but one occurrences of each
variable:

xy + (pro x)(pro x + pro y) ; x(pro y) + (pro x)(pro x + y)
(pro x)y + x(pro x + pro y) ; (pro x)(pro y) + x(pro x + y)

(pro x)y + (pro x)(x + pro y) ; (pro x)(pro y) + (pro x)(x + y)

These interval functions are the generalized interval natural extensions of f .

2.5 An original generalized interval mean-value extension

Let us consider f : Rn −→ R differentiable, x ∈ KRn and ∆i ∈ IR such that{
∂f

∂xi
(x) | x ∈ pro x

}
⊆ ∆i.

The ∆i can be computed using an interval evaluation of the expressions of f
derivatives. Then, the following interval is (f,x)-interpretable:

fMV (x) := f(x̃) +
n∑

k=1

∆k × (xk − x̃k) where x̃ ∈ pro x.



Let us justify this statement: on one hand, z := fMV (x) is the generalized
interval evaluation of the function g(x, δ) = f(x̃) +

∑
δk(xk − x̃k) for ∆ ∈ IRn

and x ∈ KR
n. As the expression of g contains only one occurrence of each

variable xk or δk, the following quantified proposition is true:(
∀δ ∈ ∆

)(
∀xP ∈ xP

)(
Qzz ∈ pro z

)(
∃xI ∈ pro xI

)(
z = g(x, δ)

)
,

where P = {k | xk ∈ IR} and I = {k | xk /∈ IR}. On the other hand, the mean-
value theorem (see eg. [16]) entails the quantified proposition(

∀x ∈ x
)(
∃δ ∈ ∆

)(
f(x) = g(x, δ)

)
.

It can be proved (see [1]) that the conjunction of these latter two quantified
propositions entails the quantified proposition(
∀xP ∈ xP

)(
Qzz ∈ pro z

)(
∃xI ∈ pro xI

)(
∃δ ∈ ∆

)(
z = g(x, δ)∧f(x) = g(x, δ)

)
.

Finally, as
(
∃δ ∈ ∆

)(
z = g(x, δ) ∧ f(x) = g(x, δ)

)
implies z = f(x), the interval

z is (f,x)-interpretable. The generalized interval extension fMV (x) is called
a generalized interval mean-value extension because of the similitude with the
classical mean-value extension. It has a quadratic order of convergence and is
therefore expected to raise much better results than the natural AE-extension
in realistic situations (see [1]).

Example 8. Let us consider f(x) = x1(x1 − x2), x1 = [4, 2] and x2 = [0, 1] (so
that Qx1 = ∃ and Qx2 = ∀). We can use x̃ = mid x, ∆1 = 2(pro x1) − x2 =
[3, 8] and ∆2 = −(pro x1) = [−4,−2]. The generalized interval mean-value
extension raises fMV (x) = [8.5, 6.5]. The following quantified proposition is
therefore validated:(

∀x2 ∈ [0, 1]
)(
∀z ∈ [6.5, 8.5]

)(
∃x1 ∈ [2, 4]

)(
z = f(x)

)
.

2.6 Generalized interval mean-value extension for vector-valued
functions

The situation is more complicated when dealing with vector-valued functions.
Let F (a, x) = (f1, f2) : R3 −→ R

2 and a ∈ IR and x ∈ IR2
(so that Qa = ∀

and Qx1 = Qx2 = ∃). We want to compute a generalized interval z = (z1, z2)
which satisfy(

∀a ∈ a
)(Qz1 z1 ∈ pro z1

)(
Qz2 z2 ∈ pro z2

)(∃x1 ∈ pro x1

)(
∃x2 ∈ pro x2

)(
z = F (a, x)

)
6 (3)

using the generalized interval mean-value extensions of the functions f1 and f2. A
way to obtain the wanted interpretation is to compute z1 = fMV

1 (a,x1,pro x2)
and z2 = fMV

2 (a,pro x1,x2). Hence we get the following interpretations:(
∀a ∈ a

)(
∀x2 ∈ pro x2

)(
Qz1 z1 ∈ pro z1

)(
∃x1 ∈ pro x1

)(
z1 = f1(a, x)

)(
∀a ∈ a

)(
∀x1 ∈ pro x1

)(
Qz2 z2 ∈ pro z2

)(
∃x2 ∈ pro x2

)(
z2 = f2(a, x)

)
6 The blocks

(
Qz1 z1 ∈ pro z1

)
and

(
Qz2 z2 ∈ pro z2

)
must be placed in order to

obtain a quantified proposition in the AE-form.



It can be proved that the latter two quantified propositions entail the quantified
proposition (3), i.e. that z is (F,a,x)-interpretable (see [1]). We denote the
generalized interval function(

fMV
1 (a,x1,pro x2) , fMV

2 (a,pro x1,x2)
)T

by FMV (a,x).

Remark 3. The other choice

z1 = fMV
1 (a,pro x1,x2) and z2 = fMV

2 (a,x1,pro x2),

which leads to the interpretations(
∀a ∈ a

)(
∀x1 ∈ pro x1

)(
Qz1 z1 ∈ pro z1

)(
∃x2 ∈ pro x2

)(
z1 = f1(a, x)

)(
∀a ∈ a

)(
∀x2 ∈ pro x2

)(
Qz2 z2 ∈ pro z2

)(
∃x1 ∈ pro x1

)(
z2 = f2(a, x)

)
,

would also be correct. However, the generalized interval mean-value extension
for vector-valued functions will usually be coupled to a preconditioning process
which changes the function F into a near identity function G = CF , where C is
the preconditioning real matrix. In this situation, the first choice will be more
efficient. Finally, the naive computations

z1 = fMV
1 (a,x1,x2) and z2 = fMV

2 (a,x1,x2)

leads to the following interpretations:(
∀a ∈ a

)(
Qz1 z1 ∈ pro z1

)(
∃x1 ∈ pro x1

)(
∃x2 ∈ pro x2

)(
z1 = f1(a, x)

)(
∀a ∈ a

)(
Qz2 z2 ∈ pro z2

)(
∃x1 ∈ pro x1

)(
∃x2 ∈ pro x2

)(
z2 = f2(a, x)

)
.

However, the conjunction of the latter two quantified propositions does not imply
(3) in general.

3 Application of the generalized interval mean-value
extension

A two arms parallel robot can be described by the vector-valued function

r = F (a, x) with r1 =
√

x2
1 + x2

2 and r2 =
√

(x1 − a)2 + x2
2,

where rk, xk and a are respectively the commands, the coordinates of the working
point and a parameter (see [15]). Given x = ([3.9, 4.1], [3.9, 4.1])T and a =
[9.99, 10.01], we want to compute a set of command values each of them leading
the working point inside x, this whatever is a ∈ a. Formally, we want to compute
some S ⊆ R2 which satisfies(

∀r ∈ S
)(
∀a ∈ a

)(
∃x ∈ x

)(
r = F (a, x)

)
.



Fig. 1. Computation of the position of the working point for 64 samples.

A preconditioning is needed7 so we consider the equation Cr = CF (a, x) ⇐⇒
r = F (a, x) where C is the usual midpoint inverse preconditioning matrix. The
Jacobian matrix of F is

J(a, x) :=

(
∂f1
∂a

∂f1
∂x1

∂f1
∂x2

∂f2
∂a

∂f2
∂x1

∂f2
∂x2

)

and the one of CF is CJ(a, x). In this situation, the interval evaluation of the
Jacobian matrix of CF is

A ≈ C

(
[0, 0] [.67, .74] [.67, .74]

[.80, .86] [−.86,−.80] [.53, .58]

)
≈
(

[−.62,−.58] [.96, 1.04] [−.04, .04]
[.58, .62] [−.05, .05] [.95, 1.05]

)
and it satisfies

(
∀a ∈ a

)(
∀x ∈ x

)(
CJ(a, x) ∈ A

)
. We now evaluate the gen-

eralized interval mean-value extension of CF for the intervals a ∈ IR and
(dual x) ∈ IR

2
so that Qa = ∀ and Qx1 = Qx2 = ∃ (a simple implementa-

tion of the Kaucher arithmetic in C was used):

u := (CF )MV (a,dual x) ≈ ([−1.91,−2.09], [10.08, 9.90]).

As u is improper, this computation is interpreted by(
∀u ∈ pro u

)(
∀a ∈ a

)(
∃x ∈ x

)(
u = Cf(a, x)

)
.

Finally, for any command r in the parallelepiped
{
C−1u | u ∈ pro u

}
—left hand

side graphic of Figure 1—and any a ∈ a, the working point x lies inside x. This
is illustrated by Figure 1 where the system r = F (a, x) has been solved for 64
points (a, r) satisfying a ∈ a and r ∈

{
C−1u | u ∈ pro u

}
. We can see that the

parallelepiped is almost optimal: some solutions are very close to each side of
the box x.

7 See [3, 2] for more details about the preconditioning which is used.



4 Related work

If the equation r = F (a, x) can be written under the form x = H(a, r), then
the classical interval analysis provides a test for a box r to satisfy the problem:
indeed, if H(a, r) ⊆ x, where H is a classical interval extension of H, then the
quantified proposition

(
∀r ∈ r

)(
∀a ∈ a

)(
∃x ∈ x

)(
x = H(a, r)

)
is true and thus

the box r is proved to be a solution of the problem of Section 3. Then, a bisection
algorithm can compute an accurate inner approximation of the wanted set.

The quantifier elimination (see [14, 7]) can be used to changed the problem
of Section 3 into a quantifier free problem which could be solved by some basic
interval bisection algorithm. However, the complexity of the quantifier elimina-
tion is known to restrict its application to small problems. The following code
was executed with Mathematica5.1 on a PentiumVI 2Ghz with a 512Mo mem-
ory:

Resolve[ r1 >= 0 && r2 >= 0 &&
ForAll[a , a\[Element] Reals && 10− 1/100 <= a <= 10 + 1/100 ,

Exists[x1 , x1\[Element] Reals && 4− 1/10 <= x1 <= 4 + 1/10 ,
Exists[x2 , x2\[Element] Reals && 4− 1/10 <= x2 <= 4 + 1/10 ,

r1^2 == x1^2 + x2^2 && r2^2==(x1 − a)^2 + x2^2
]

]
],Reals]

Mathematica didn’t provide any solution after 20 minutes of computations.
No other numerical algorithm has been yet proposed to solve the problem

of Section 3. The techniques dedicated to quantified inequality constraints (see
[10, 22]) cannot solve this problem. Other techniques (see [21, 19]) can handle
quantified constraints with one equality, i.e. f(x) = 0 with f : Rn −→ R a
real-valued function. These techniques can be easily extended to several equality
constraints if those constraints do not share any existentially quantified variables.
But the problem of Section 3 contains some existentially quantified variables
which are shared between the two equations.

5 Conclusion

The modal intervals theory allows to change the problem of validation of some
quantified propositions into the computation of generalized interval functions.
Thanks to our simpler formulation of the modal intervals theory, we have defined
a generalized interval mean-value extension whose evaluation validates some
quantified propositions. An example problem which is not well solved today
has been proposed and one evaluation of the generalized interval mean-value
extension has provided a sharp solution. So as to be efficient, the mean-value
extensions have to be applied to small enough intervals so that the involved
interval Jacobian matrix is regular. Future works will consist in elaborating a
bisection algorithm so as to deal with larger intervals.
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