

Segmentation

University of the Philippines
August 2006

Diane Lingrand
University of Nice – Sophia Antipolis,
France

lingrand@polytech.unice.fr

http://www.polytech.unice.fr/~lingrand

Why edge detection?

- in order to detect an object in a scene
 - Example: a robot that wants to play soccer
- in order to do measures
 - objects verification in a factory
- in order to extract informations
- in order to compress image data

Which primitives?

- Edges
- Regions
- Point of interest or corners
- Patterns

Course's overview

- Edge detection
 - A simple example
 - Convolution approach
 - 1st derivative (Sobel, Kirsch, Prewitt, ...)
 - 2nd derivative (Laplacien, ...)
 - Optimal filtering
 - Canny, Deriche
- Regions detection
 - similarity
 - Hough transform
 - contour deformation

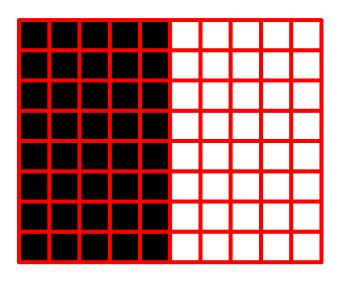
Where are the edges?

Where are the edges ? (2)

• Let us begin with a very simple image:

Where are the edges ? (3)

• Let us look closer to the pixels:

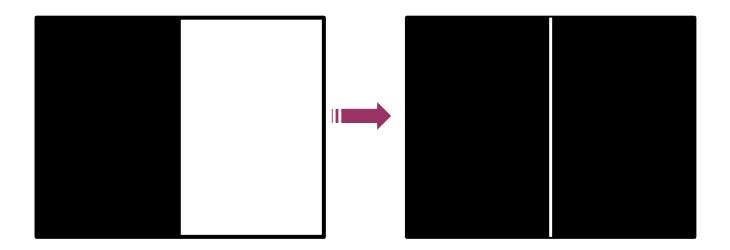


A first filter (1)

- Let us build an new image where each pixel (i,j) is obtained from the difference between pixel at (i,j) and pixel at (i-1,j)
 - pixels are still between 0 and 255: we need to transform the results
 - positive and negative differences: we only need the absolute value
 - be careful of image borders !

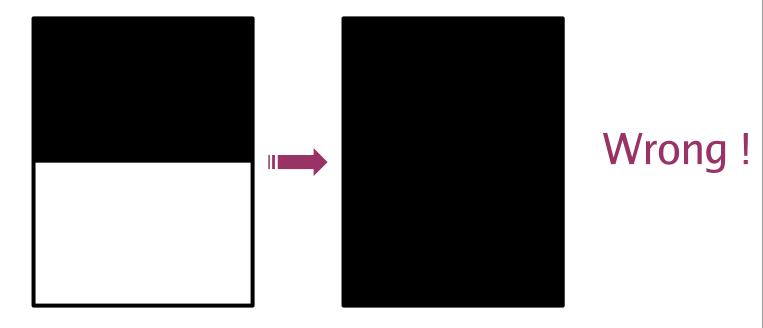
A first filter (2)

Result on our simple image



A first filter (3)

Result on another image



Enhancing our first filter

- We will compose :
 - a vertical edge detector
 - difference between (i,j) and (i-1,j) :

$$- I_{cv}(i,j) = I(i,j) - I(i-1,j)$$

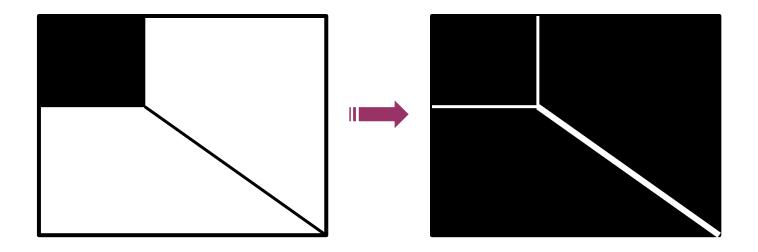
- and an horizontal edge detector
 - difference between (i,j) and (i,j-1)

$$- I_{ch}(i,j) = I(i,j) - I(i,j-1)$$

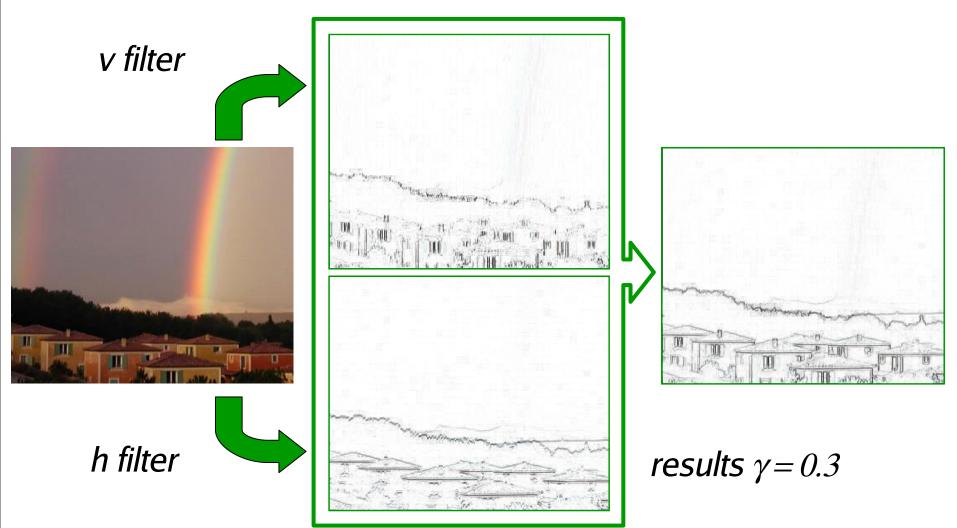
- magnitude : $I_c = \text{sqrt}(I_{cv}(i,j)^2 + I_{ch}(i,j)^2)$

Let us try on a single image

• Image without noise:



Let us try on a real image



More in details

Other image:



Conclusion on our first filter

Drawbacks:

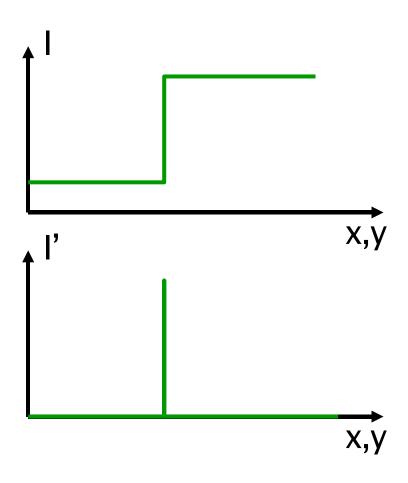
- sensitive to noise
- too many edges detected
- more sensitive to horizontal and vertical edges than the others

Advantages:

- fast
- not difficult to implement

The ideal edge

- edge = where the intensity is not continuous
- maxima of the derivative



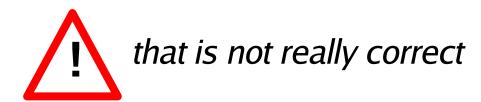
Intensity derivative

• Definition:
$$\frac{df}{dx}(x) = \lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$$

with h at a maximum of 1

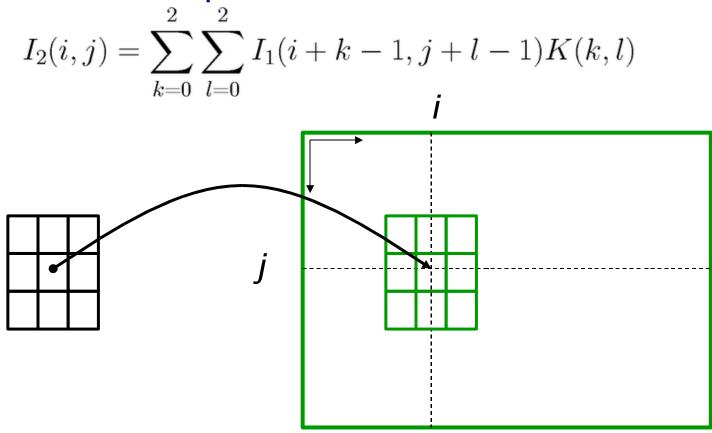
Approximation :

$$\frac{\partial f}{\partial x} = I[x+1] - I[x]$$



Convolution

Convolution operator with a kernel K



Convolution in Java

or:
ConvolveOp.EDGE_ZERO_FILL

Roberts filters (1965)

$$\frac{dI}{dx} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
$$\frac{dI}{dy} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

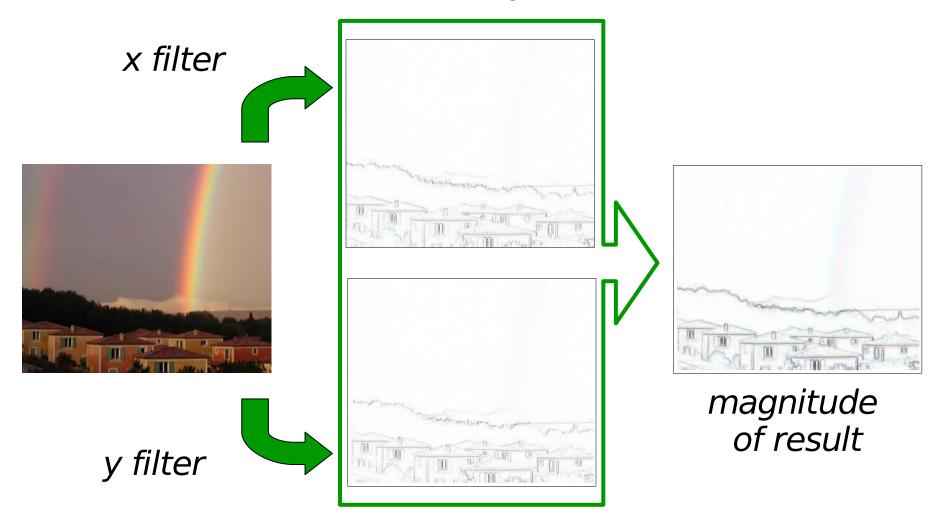
 Magnitude = edge strength

$$\sqrt{(rac{dI}{dx})^2+(rac{dI}{dy})^2}$$
 ou $\max(rac{dI}{dx},rac{dI}{dy})$

Direction of edge normal

$$\arctan((\frac{dI}{dy})/(\frac{dI}{dx}))$$

Example



Sensibility to noise

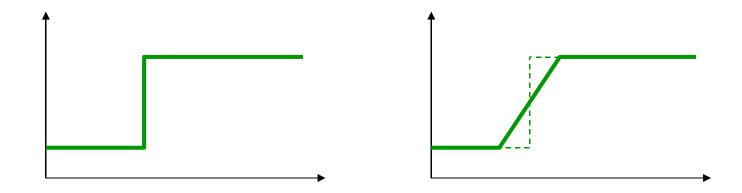
- Let us assume : $I_{obs} = I_{signal} + \varepsilon \sin(\omega x)$
- Derivative : $I'_{obs} = I'_{signal} + \varepsilon \omega \cos(\omega x)$
- $\omega = 2\pi f$: high frequencies will disturb the signal derivative
- we need to eliminate these high frequencies: smooting
 - mean smoothing
 - gaussian smoothing
 - exponential filtering,

Mean smooting

• ex: filter 3x3

1	1	1
1	1	1
1	1	1

/ 9



Gaussian smoothing (Marr, 1980)

- $h(x,y) = 1/(2\pi \sigma^2) \exp(-(x^2+y^2)/(2\sigma^2))$
- troncated and discretised gaussian :

0	1	0	
1	4	1	/8
0	1	0	

1	1	1
1	8	1
1	1	1

/ 16

Sobel filter (1970)

Convolution :

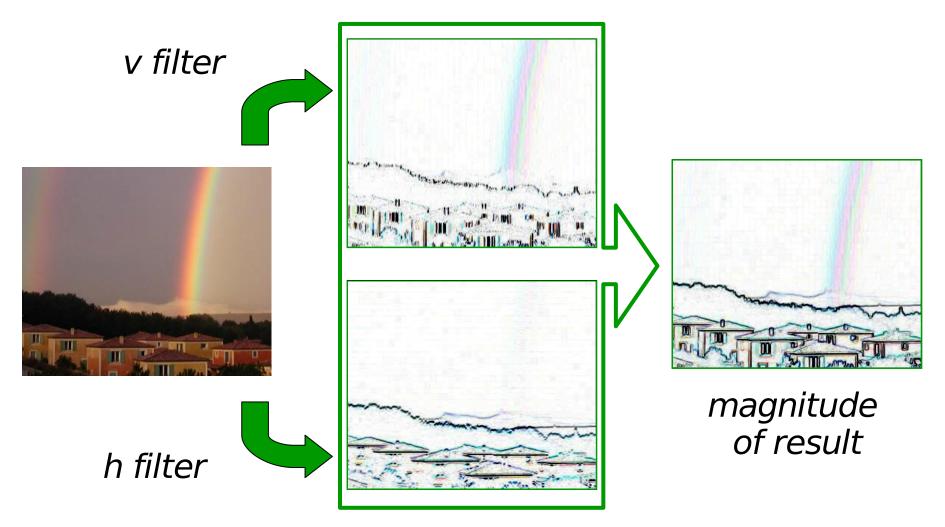
- smoothing [1 2 1]
- derivative [1 0 -1]
- Mean of « derivatives » at x and x-1

$$\frac{I[x+1] - I[x-1]}{2}$$

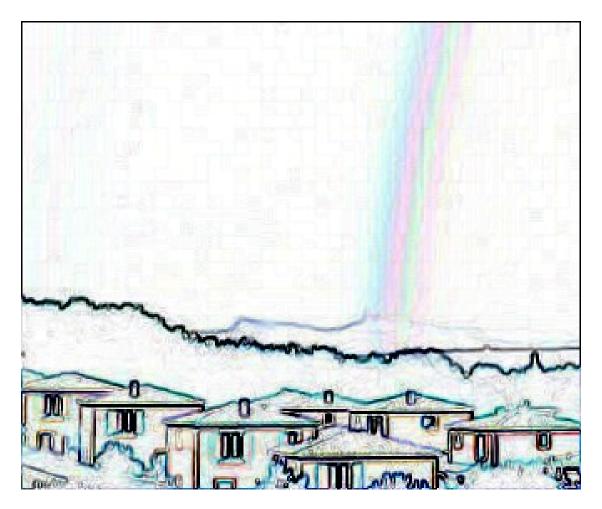
$$\frac{dI}{dx} = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{pmatrix} / 4$$

$$\frac{dI}{dy} = \begin{pmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix} / 4$$

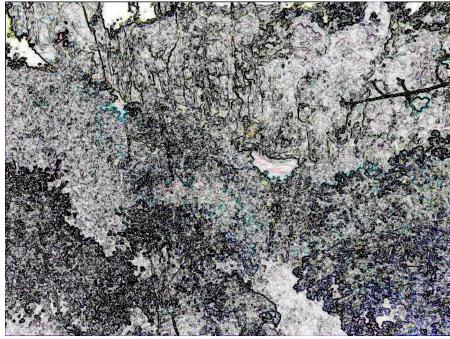
Sobel: results (1)



Closer



Sobel: results (2)



Sobel: results (3)

Other filters: using more directions

Prewitt (1970)

$$\begin{pmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{pmatrix} \dots$$

Kirsch (1971)

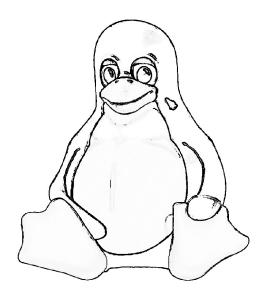
$$\begin{pmatrix} 5 & -3 & -3 \\ 5 & 0 & -3 \\ 5 & -3 & -3 \end{pmatrix}, \begin{pmatrix} 5 & 5 & -3 \\ 5 & 0 & -3 \\ -3 & -3 & -3 \end{pmatrix}, \begin{pmatrix} 5 & 5 & 5 \\ -3 & 0 & -3 \\ -3 & -3 & -3 \end{pmatrix} \dots$$

$$/ 15$$

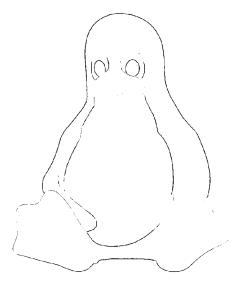
Enhancement: thresholding

 we eliminate all the pixels that have a value below a minimum threshold

How to choose the threshold?



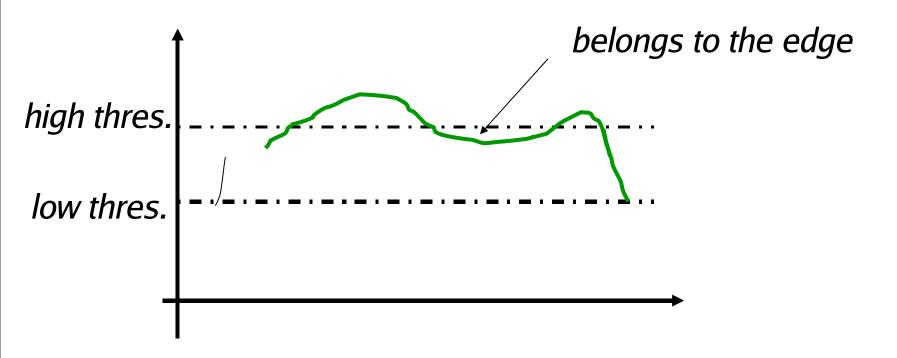
 Low threshold: all edges are detected but we have false positives



 High threshold: all the pixels detected are edge pixels but we are missing some of them (false negatives)

Enhancement (2)

Hysteresis thresholding

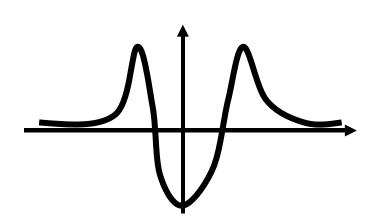


Laplacian

• Laplacian
$$\nabla^2 I = \frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 I}{\partial y^2}$$

Smoothing and Laplacian : Laplacian of a

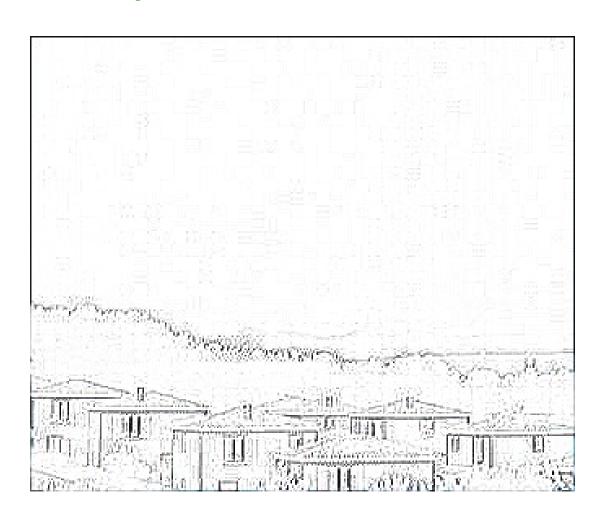
gaussian



$$\begin{pmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{pmatrix} / 4$$

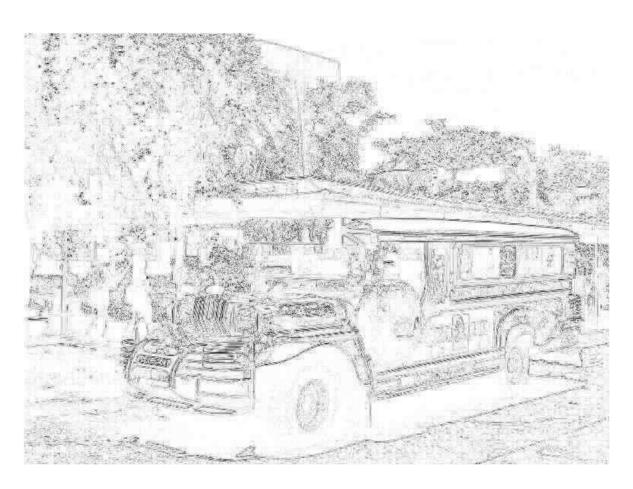
$$\begin{pmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{pmatrix} / 8$$

Laplace: results (1)



 $\gamma = 0.3$

Laplace: results (2)



 $\gamma = 0.3$

DOG Laplacian (80's) Marr and Hildreth

- Laplacian seen as the difference between two gaussian smoothing filters with different kernels
- Edge image: difference between a weakly smoothed image and a strongly smoothed image
 - try it on computers

Huertas-Médioni (1986)

Laplacian of a gaussian :

$$\Delta g(x,y) = \frac{1}{G_0} (2 - \frac{x^2 + y^2}{2\sigma^2}) e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

• separation : $g_1(x).g_2(y) + g_1(y).g_2(x)$ with:

$$g_1(x) = \frac{1}{\sqrt{2G_0}} (1 - \frac{x^2}{2\sigma^2}) e^{-\frac{x^2}{2\sigma^2}}$$

$$g_2(x) = \frac{1}{\sqrt{2G_0}} e^{-\frac{x^2}{2\sigma^2}}$$

Example:
$$1/G0 = 4232$$
 et $\sigma^2 = 2$:
 $g1 = [-1 -6 -17 -17 18 46 18 -17 -17 -6 -1]$
 $g2 = [0 1 5 17 36 46 36 17 5 1 0]$

What about color?

- Detection on each color component (R, G, B) separately and recomposition of the color after filtering?
- Max of the results on each component?
- Mean?
- Luminance (Y)?

Exercise

- In file ConvolutionFilter.java
 - implement the convolution function
 public BufferedImage filter(BufferedImage bin)
- Try the following filters:
 - Sobel, Prewitt, Kirsch, Laplace
- Try different gaussian filters
 - using different kernels
- Combine filters, smootings et thresholding
 - keep the best results

```
public ConvolutionFilter(int type) {
               super();
               name = NAMES[type] + " filter";
               filters = new ArrayList();
               double ∏∏ filter:
               switch(type) {
               case NAIVE_X:
                  filter = new double [3][3]:
                  filter[0][0] = 0; filter[0][1] = 0; filter[0][2] = 0;
                  filter[1][0] = -1; filter[1][1] = 1; filter[1][2] = 0;
                  filter[2][0] = 0; filter[2][1] = 0; filter[2][2] = 0;
                  filters.add(filter);
                  break:
               case NAIVE_Y:
                  filter = new double [3][3]:
                  filter[0][0] = 0; filter[0][1] = -1; filter[0][2] = 0;
                  filter[1][0] = 0; filter[1][1] = 1; filter[1][2] = 0;
                  filter[2][0] = 0; filter[2][1] = 0; filter[2][2] = 0;
                  filters.add(filter);
                  break;
               case NAIVE:
                  filter = new double [3][3];
                  filter[0][0] = 0; filter[0][1] = 0; filter[0][2] = 0;
                  filter[1][0] = -1; filter[1][1] = 1; filter[1][2] = 0;
                  filter[2][0] = 0; filter[2][1] = 0; filter[2][2] = 0;
                  filters.add(filter);
                  filter = new double [3][3]:
                  filter[0][0] = 0; filter[0][1] = -1; filter[0][2] = 0;
                  filter[1][0] = 0; filter[1][1] = 1; filter[1][2] = 0;
                  filter[2][0] = 0; filter[2][1] = 0; filter[2][2] = 0;
                  filters.add(filter);
```

```
case GAUSSIAN3:
    filter = GAUSSIAN3_FILTER;
    filters.add(filter);
    break;
case GAUSSIAN5:
    filter = GAUSSIAN5_FILTER;
    filters.add(filter);
    break;

default:
}
```

Optimal filtering

- Canny (1986)
- impulsional response h(x) such as:
 - good detection
 - good localisation
 - weak multiplicity of maxima due to noise
- we search for an edge
 - of magnitude A
 - with an additive gaussian noise of null mean and variance n₀²

Quality 1: good detection

- The more smoothing, the better the quality of the detection
 - we want to maximize the ratio signal by noise :

$$\Sigma = \frac{A \int_{-\infty}^{0} f(x) dx}{n_0 \int_{-\infty}^{\infty} f^2(x) dx}$$

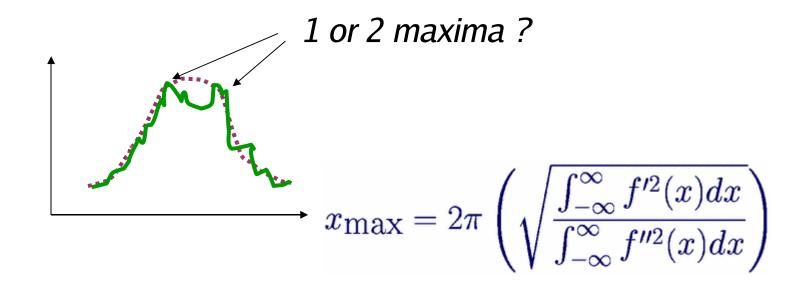
Quality 2: Localisation

- The less smoothing, the better the localisation.
 - we want to minimize the variance of the positions of roots. It is equivalent to maximize:

$$\Lambda = \frac{A|f'(0)|}{n_0 \int_{-\infty}^{\infty} f'^2(x) dx}$$

Quality 3: unique response

We want an unique response for one edge
 : we limit the distance between 2 maxima



General optimal filter

- Trade-off between Σ and Λ
- Find f maximising $\Sigma\Lambda$ under the constraint : $x_{max} = k$

which consist to solve the differential equation:

$$2f(x) - 2 \lambda_1 f''(x) + 2\lambda_2 f''''(x) + \lambda_3 = 0$$

of general solution:

$$f(x) = a_1 e^{\alpha x} \sin(\omega x) + a_2 e^{\alpha x} \cos(\omega x) + a_3 e^{-\alpha x} \sin(\omega x) + a_4 e^{-\alpha x} \cos(\omega x)$$

Optimal filtering: Canny

- finite impulse response filter [-M;+M]
- constraints:

```
x_{max} = kM

f(0) = 0; f(M) = 0;

f'(0) = S; f'(M) = 0;

x < 0: f(x) = -f(-x)
```

- numerical optimisation : $\Sigma \Lambda = 1.12$
- approximation : derivative of a gaussian ($\Sigma\Lambda$ = 0.92, k = 0.51, 20% lower performance)

Optimal filtering: Deriche (1987)

- infinite impulse response filtering
- constraints:

$$f(0) = 0$$
; $f(+\infty) = 0$; $f'(0) = S$; $f'(+\infty) = 0$;

where:

$$f(x) = \frac{S}{\omega} e^{-\alpha|x|} \sin(\omega x)$$

$$\Lambda = \sqrt{2\alpha} \qquad \Sigma = \sqrt{\frac{2\alpha}{\alpha^2 + \omega^2}}$$

$$\Sigma \Lambda = \frac{2\alpha}{\alpha^2 + \omega^2} \quad k = \sqrt{\frac{\alpha^2 + \omega^2}{5\alpha^2 + \omega^2}}$$

Optimal filtering: Deriche (2)

• Let us set $\alpha = m\omega$:

case 1
$$m >> 1$$
 $\Lambda = \sqrt{2\alpha}$ $\Sigma = \sqrt{\frac{2}{\alpha}}$ $\Sigma \Lambda = 2$ $k = 0.44$ case 2 $m = 1$ $\Lambda = \sqrt{2\alpha}$ $\Sigma = \sqrt{\frac{1}{\alpha}}$ $\Sigma \Lambda = \sqrt{2}$ $k = 0.58$ case 3 $m = \sqrt{3}$ $\Lambda = \sqrt{2\alpha}$ $\Sigma = \sqrt{\frac{3}{2\alpha}}$ $\Sigma \Lambda = \sqrt{3}$ $k = 0.5$

<u>case 1</u>: the best, corresponds to $Sxe^{-\alpha|x|}$

<u>case 2</u>: for same value of k, performance index of Deriche increase of 25 %

<u>case 3</u>: for same value of k, performance

index of Deriche increase of 90 %

Optimal filtering : Deriche (3)

- optimal integrator: $S(\alpha|x|+1)e^{-\alpha|x|}$
- bidimensionnal filters:

```
f_{x}(x,y) = k_{1}m e^{-\alpha|m|} k_{2}(\alpha |n|+1) e^{-\alpha|n|}

f_{y}(x,y) = k_{1}(\alpha |m|+1) e^{-\alpha|m|} k_{2}n e^{-\alpha|n|}
```

recursive implementation

Recursive implementation

Phase 1 for m from 0 to (w-1): for n from 0 to (h-1): $y_1(m,n) = a_1I_1(m,n) + a_2I_1(m,n-1) + b_1y_1(m,n-1) + b_2y_1(m,n-2)$ for n from (h-1) to 0: $y_2(m,n) = a_3I_1(m,n+1) + a_4I_1(m,n+2) + b_1y_2(m,n+1) + b_2y_2(m,n+2)$ for n from 0 to (h-1): $r(m,n) = c_1(y_1(m,n) + y_2(m,n))$ Phase 2

```
for n from 0 to (h-1):
    for m from 0 to (w-1):
       y_1(m,n) = a_5 r(m,n) + a_6 r(m-1,n) + b_1 y_1(m-1,n) + b_2 y_1(m-2,n)
    for m from (w-1) to 0:
       y_2(m,n) = a_7 r(m+1,n) + a_8 r(m+2,n) + b_1 y_2(m+1,n) + b_2 y_2(m+2,n)
    for m from 0 to (w-1):
       I_2(m,n) = c_2(y_1(m,n) + y_2(m,n))
```

Coefficients for Deriche filters

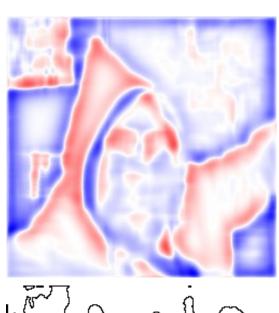
	Smoothing	x-derivative	y-derivative	Laplace 1	Laplace 2
k	$\frac{(1-e^{-\alpha})^2}{1+2\alpha e^{-\alpha}-e^{-2\alpha}}$	$\frac{(1-e^{-\alpha})^2}{1+2\alpha e^{-\alpha}-e^{-2\alpha}}$	$\frac{(1 - e^{-\alpha})^2}{1 + 2\alpha e^{-\alpha} - e^{-2\alpha}}$	$\frac{1-e^{-2\alpha}}{2\alpha e^{-\alpha}}$	$\frac{1-e^{-2\alpha}}{2\alpha e^{-\alpha}}$
a_1	k	0	k	1	0
a_2	$ke^{-\alpha}(\alpha-1)$	1	$ke^{-\alpha}(\alpha-1)$	0	1
a_3	$ke^{-\alpha}(\alpha+1)$	-1	$ke^{-\alpha}(\alpha+1)$	$e^{-\alpha}$	1
a_4	$-ke^{-2\alpha}$	0	$-ke^{-2\alpha}$	0	0
a_5	k	k	0	1	0
a_6	$ke^{-\alpha}(\alpha-1)$	$ke^{-\alpha}(\alpha-1)$	1	0	1
a_7	$ke^{-\alpha}(\alpha+1)$	$ke^{-\alpha}(\alpha+1)$	-1	$e^{-\alpha}$	1
a_8	$-ke^{-2\alpha}$	$-ke^{-2\alpha}$	0	0	0
b_1	$2e^{-\alpha}$	$2e^{-\alpha}$	$2e^{-\alpha}$	$e^{-\alpha}$	$2e^{-\alpha}$
b_2	$-e^{-2\alpha}$	$-e^{-2\alpha}$	$-e^{-2\alpha}$	0	$-e^{-2\alpha}$
c_1	1	$-(1-e^{-\alpha})^2$	1	1	$\frac{1-e^{-2\alpha}}{2}$
c_2	1	1	$-(1-e^{-\alpha})^2$	1	$\frac{1-e^{-2\alpha}}{2}$

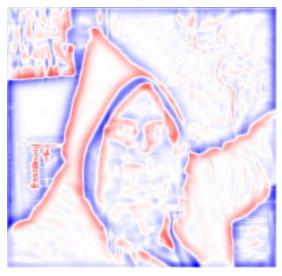
Deriche smoothing

Edges with first derivative by Deriche

0.5

Laplace by Deriche: sign and zeros





An easy image

solEssi3212.jpg

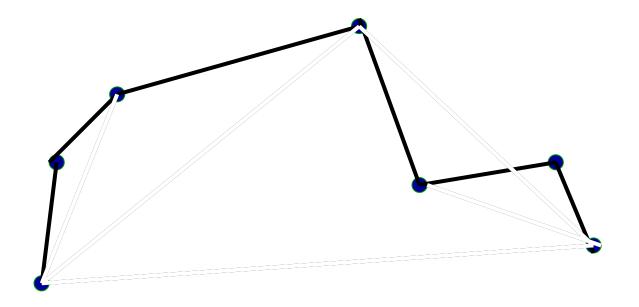
after Sobel filtering

Difficult images

Regions detection

- Regions are bounded by edges
 - detection of closed curves
 - linking all edge points
 - iterative line fitting
 - finding lines or circles or ... with the Hough transform
- Classification
- Region growing algorithm
- Split and Merge algorithm
- Other approaches :
 - snakes, deformable contours, ...

Iterative endpoint fit



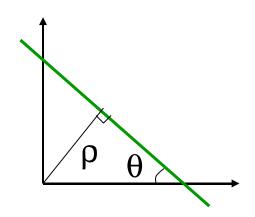
Hough transform

- Well known for lines search
- Based on parameterisation of geometrical objects
- Transformation to a parameters space
- Quantification of parameters

Hough transform of a line

• Line parameterisation:

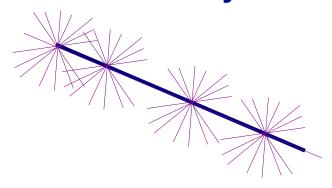
```
ρ = x cos θ + y sin θ
ou
y = a x + b
```



- For each point (x,y) labelled as edge pt:
 - for each θ value:
 - compute $\rho = x \cos \theta + y \sin \theta$
 - add a vote for (ρ, θ) : vote $[\rho][\theta]++$;
- Quantification of the parameters space

Why does it works? example of a line

- For each point that does not belong to the background, we look for all the lines that go through this point.
- Each founded line vote once.
- If the points are aligned, each point will vote for this line. This line will obtain more votes than any other.



Implementation (1)

- We need to determine the interval of parameter's values :
 - $_{-}$ a in $[a_{min}, a_{max}]$
 - b in $[b_{min}, b_{max}]$
- We need to determine the quantification steps (uniform) : Δ a, Δ b
- loop : for($a=a_{min}$; $a <= a_{max}$; $a+= \Delta \ a$) {...
- uniform quantification of b values

Implementation (2)

- What interval?
 - related to the geometrical meaning of the parameters: we do not want to loose lines
 - case y = ax + b:
 - the slope varies from infinite to + infinite
 - we consider values from -h to +h
 - b varies from h(1-w) to h(w+1)
 - case ρ =x cos(θ) + y sin(θ)
 - θ varies from 0 to π
 - ρ varies from -wto + ρ_{diag} where ρ_{diag} : image diagonal

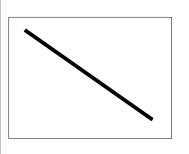
Implementation (3)

Which step?

- the smallest the step, the more accurate the solution but the biggest the image and the highest the computation time.
- we can deal with 2 stages :
 - large interval, large step
 - small interval, small step

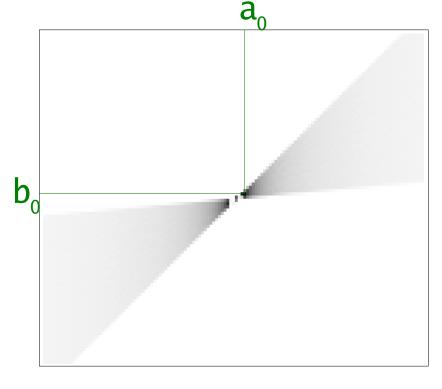
Hough transform image:

- of dimensions $(a_{max}-a_{min}+1;b_{max}-b_{min}+1)$
- to be normalized between 0 and 255 before display
- score array: indexes often result of an affine transform of real parameters values

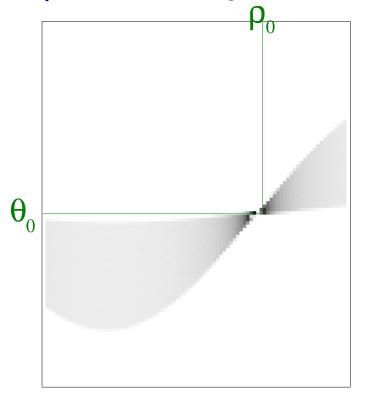


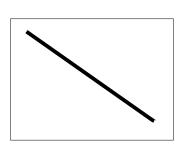
Example of transformed images

parameters space [a,b] t.q. y=ax+b

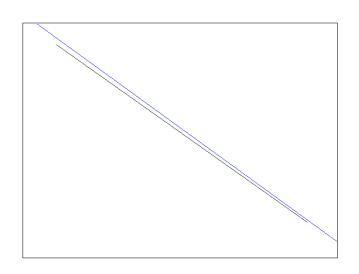


parameters space $[\rho, \theta]$ s.as $\rho = x\cos(\theta) + y\sin(\theta)$

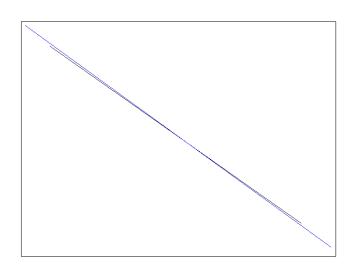




Result

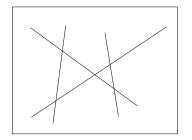


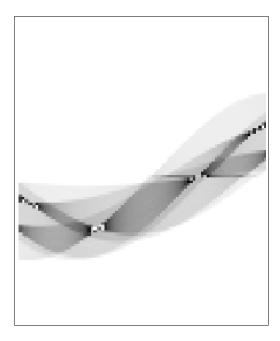
$$y = a_0 x + b_0$$

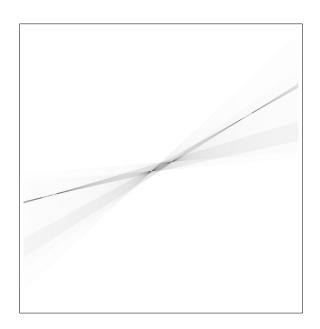


$$\rho_0 = \cos(\theta_0)x + \sin(\theta_0)y$$

Another example with 5 lines







Lines detection in an image

- One line detection in an image :
 - finding the point of maximal vote in the Hough transform image
- Multiple lines detection in an image :
 - finding multiple local maxima in the Hough transform image
 - how many maxima?
 - all points below a threshold?
- The accuracy of the detection depends on the quantification of the parameters.

Hough transform of a curve

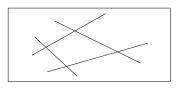
- Same idea as for a line
- Parameterisation :

```
ax^2 + bxy + cy^2 = 1
```

- For each point (x, y) in the image
 - $_{-}$ for each value of a between a_{min} and a_{max}
 - for each value of b between b_{min} and b_{max}
 - compute c such as $ax^2 + bxy + cy^2 = 1$
 - ad a vote for (a,b,c): vote[a][b][c]++;

Just try it!

- Compute and display the Hough transform for a line :
 - y = ax + b
 - $\rho = \cos(\theta)x + \sin(\theta)y$
- Draw, in the original image, the line that corresponds to the maximal vote
- Find all lines in the image
- Determine the corresponding polygone



Connex components labeling

1	1	1	0	1	1	0	1
1	1	0	1	1	0	1	1
1	0	1	1	0	1	1	1
1	1	1	0	1	1	1	1
0	0	0	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1

image after edge detection and thresholding

1	1	1	0	2	2	0	3
1	1	0	4	2	0	5	3
1	0	6	2	0	7	3	3
1	1	1	0	8	3	3	3
0	0	0	9	3	3	3	3
10	10	10	3	3	3	3	3
10	10	10	3	3	3	3	3
10	10	3	3	3	3	3	3

image of labels after the first browsing

1	1	1	0	1	1	0	3
1	1	0	1	1	0	3	3
1	0	1	1	0	3	3	3
1	1	1	0	3	3	3	3
0	0	0	3	3	3	3	3
3	3	3	3	3	3	3	3
3	3	3	თ	З	თ	თ	3
3	3	3	3	3	3	3	3

image of labels after update

1	2	3	4	5	6	7	8	9	10
			2	3	2	3	3	3	3
	1		1		1				