
2006 1

Segmentation
University of the Philippines

August 2006

Diane Lingrand
University of Nice – Sophia Antipolis,

France
lingrand@polytech.unice.fr

http://www.polytech.unice.fr/~lingrand

2006 2

Why edge detection ?

• in order to detect an object in a scene
– Example: a robot that wants to play soccer

• in order to do measures
– objects verification in a factory

• in order to extract informations

• in order to compress image data

2006 3

Which primitives ?

• Edges

• Regions

• Point of interest or corners

• Patterns

2006 4

Course's overview
• Edge detection

– A simple example

– Convolution approach
• 1st derivative (Sobel, Kirsch, Prewitt, …)

• 2nd derivative (Laplacien, …)

– Optimal filtering
• Canny, Deriche

• Regions detection
– similarity

– Hough transform

– contour deformation

2006 5

Where are the edges ?

2006 6

2006 7

Where are the edges ? (2)

• Let us begin with a very simple image :

2006 8

Where are the edges ? (3)

• Let us look closer to the pixels :

2006 9

A first filter (1)

• Let us build an new image where each
pixel (i,j) is obtained from the difference
between pixel at (i,j) and pixel at (i-1,j)
– pixels are still between 0 and 255: we need

to transform the results

– positive and negative differences: we only
need the absolute value

– be careful of image borders !

2006 10

A first filter (2)

• Result on our simple image

2006 11

A first filter (3)

• Result on another image

Wrong !

2006 12

Enhancing our first filter

• We will compose :
– a vertical edge detector

• difference between (i,j) and (i-1,j) :

– Icv(i,j) = I(i,j) – I(i­1,j)

– and an horizontal edge detector
• difference between (i,j) and (i,j-1)

– Ich(i,j)= I(i,j) – I(i,j­1)

– magnitude : Ic = sqrt(Icv(i,j)2 + Ich(i,j)2)

2006 13

Let us try on a single image

• Image without noise :

2006 14

Let us try on a real image

h filter

v filter

results γ = 0.3

2006 15

More in details

2006 16

Other image :

2006 17

Conclusion on our first filter

• Drawbacks:
– sensitive to noise
– too many edges detected
– more sensitive to horizontal and vertical

edges than the others

• Advantages:
– fast
– not difficult to implement

2006 18

The ideal edge

• edge = where the
intensity is not
continuous

• maxima of the
derivative

I

x,yI’

x,y

2006 19

Intensity derivative

• Definition:

with h at a maximum of 1
• Approximation :

! that is not really correct

2006 20

Convolution

• Convolution operator with a kernel K

i

j

2006 21

Convolution in Java

float [] filtre = {-1.0f, 0.0f, 1.0f,

 -2.0f, 0.0f, 2.0f,

 -1.0f, 0.0f, 1.0f };

Kernel kernel = new Kernel(3, 3, filtre);

ConvolveOp cop = new ConvolveOp(kernel,
ConvolveOp.EDGE_NO_OP, null);

cop.filter(biInput,biOutput);

or:
ConvolveOp.EDGE_ZERO_FILL

! sign

2006 22

Roberts filters (1965)

• Magnitude = edge
strength

• Direction of edge normal

ou

2006 23

Example

y filter

x filter

magnitude
of result

2006 24

Sensibility to noise

• Let us assume : Iobs = Isignal + ε sin(ωx)

• Derivative : I’obs = I’signal + ε ω cos(ωx)

• ω = 2πf : high frequencies will disturb
the signal derivative

• we need to eliminate these high
frequencies : smooting
– mean smoothing
– gaussian smoothing
– exponential filtering, ….

2006 25

Mean smooting

• ex: filter 3x3

111

111
111

 / 9

2006 26

Gaussian smoothing
(Marr, 1980)

• h(x,y) = 1/(2π σ 2) exp(-(x2+y2)/(2σ2))

• troncated and discretised gaussian :

010

141

010

111

181

111

/ 8 / 16

2006 27

Sobel filter (1970)

• Convolution :
– smoothing [1 2 1]
– derivative [1 0 -1]

• Mean of « derivatives »
at x and x-1

/ 4

/ 4

2006 28

Sobel : results (1)

h filter

v filter

magnitude
 of result

2006 29

Closer

2006 30

Sobel : results (2)

2006 31

Sobel : results (3)

2006 32

Other filters : using more
directions

• Prewitt (1970)

• Kirsch (1971)

/ 3

/ 15

2006 33

Enhancement : thresholding

• we eliminate all the pixels that have a
value below a minimum threshold

2006 34

How to choose the threshold ?

• Low threshold: all
edges are detected
but we have false
positives

• High threshold: all
the pixels detected
are edge pixels but
we are missing some
of them (false
negatives)

2006 35

Enhancement (2)

• Hysteresis thresholding

low thres.

high thres.

belongs to the edge

2006 36

Laplacian

• Laplacian

• Smoothing and Laplacian : Laplacian of a
gaussian

/ 4

/ 8

2006 37

Laplace : results (1)

γ = 0.3

2006 38

Laplace : results (2)

γ = 0.3

2006 39

 DOG Laplacian (80's)
Marr and Hildreth

• Laplacian seen as the difference between
two gaussian smoothing filters with
different kernels

• Edge image : difference between a weakly
smoothed image and a strongly smoothed
image
– try it on computers

2006 40

Huertas-Médioni (1986)

• Laplacian of a gaussian :

• separation : g1(x).g2(y) + g1(y).g2(x) with:

Example: 1/G0 = 4232 et σ2 = 2 :
g1 = [-1 -6 -17 -17 18 46 18 -17 -17 -6 -1]
g2 = [0 1 5 17 36 46 36 17 5 1 0]

2006 41

What about color ?

• Detection on each color component (R, G,
B) separately and recomposition of the
color after filtering ?

• Max of the results on each component ?

• Mean ?

• Luminance (Y) ?

2006 42

Exercise

• In file ConvolutionFilter.java
– implement the convolution function

public BufferedImage filter(BufferedImage bin)

• Try the following filters :
– Sobel, Prewitt, Kirsch, Laplace

• Try different gaussian filters
– using different kernels

• Combine filters, smootings et thresholding
– keep the best results

2006 43

public ConvolutionFilter(int type) {
super();
name = NAMES[type] + " filter";
filters = new ArrayList();
double [][] filter;
switch(type) {
case NAIVE_X:
 filter = new double [3][3];
 filter[0][0] = 0; filter[0][1] = 0; filter[0][2] = 0;
 filter[1][0] = -1; filter[1][1] = 1; filter[1][2] = 0;
 filter[2][0] = 0; filter[2][1] = 0; filter[2][2] = 0;
 filters.add(filter);
 break;
case NAIVE_Y:
 filter = new double [3][3];
 filter[0][0] = 0; filter[0][1] = -1; filter[0][2] = 0;
 filter[1][0] = 0; filter[1][1] = 1; filter[1][2] = 0;
 filter[2][0] = 0; filter[2][1] = 0; filter[2][2] = 0;
 filters.add(filter);
 break;
case NAIVE:
 filter = new double [3][3];
 filter[0][0] = 0; filter[0][1] = 0; filter[0][2] = 0;
 filter[1][0] = -1; filter[1][1] = 1; filter[1][2] = 0;
 filter[2][0] = 0; filter[2][1] = 0; filter[2][2] = 0;
 filters.add(filter);
 filter = new double [3][3];
 filter[0][0] = 0; filter[0][1] = -1; filter[0][2] = 0;
 filter[1][0] = 0; filter[1][1] = 1; filter[1][2] = 0;
 filter[2][0] = 0; filter[2][1] = 0; filter[2][2] = 0;
 filters.add(filter);

case GAUSSIAN3:
 filter = GAUSSIAN3_FILTER;
 filters.add(filter);
 break;
case GAUSSIAN5:
 filter = GAUSSIAN5_FILTER;
 filters.add(filter);
 break;

default:
}

 }

public BufferedImage filter(BufferedImage bin) {
int w = bin.getWidth();
int h = bin.getHeight();
BufferedImage bout = new BufferedImage(w,h,

BufferedImage.TYPE_INT_RGB);
for(int i = 0 ; i < w; i++)
 for(int j = 0 ; j < h; j++)

bout.setRGB(i,j,0);

int nbFilters = filters.size();

switch(nbFilters) {
case 0:
 return bout;
 break;
case 1:

. . .

. . .

2006 44

Optimal filtering

• Canny (1986)
• impulsional response h(x) such as:

– good detection
– good localisation
– weak multiplicity of maxima due to noise

• we search for an edge
– of magnitude A
– with an additive gaussian noise of null mean

and variance n0
2

2006 45

Quality 1: good detection

• The more smoothing, the better the quality
of the detection
– we want to maximize the ratio signal by

noise :

2006 46

Quality 2: Localisation

• The less smoothing, the better the
localisation.
– we want to minimize the variance of the

positions of roots. It is equivalent to
maximize:

2006 47

Quality 3: unique response

• We want an unique response for one edge
: we limit the distance between 2 maxima

1 or 2 maxima ?

2006 48

General optimal filter

• Trade-off between Σ and Λ

• Find f maximising ΣΛ under the constraint :
xmax = k

which consist to solve the differential equation:
2f(x) – 2 λ1f’’(x) + 2λ2f’’’’(x) + λ3 = 0

of general solution :

2006 49

Optimal filtering : Canny

• finite impulse response filter [-M;+M]
• constraints :

xmax = kM
f(0) = 0 ; f(M) = 0;
f’(0) = S; f’(M) = 0;
x<0 : f(x) = -f(-x)

• numerical optimisation : ΣΛ = 1.12

• approximation : derivative of a gaussian (ΣΛ =
0.92, k = 0.51, 20% lower performance)

2006 50

Optimal filtering : Deriche (1987)

• infinite impulse response filtering

• constraints :
f(0) = 0 ; f(+∞) = 0 ; f’(0) = S ; f’(+∞) = 0;

• where :

2006 51

Optimal filtering: Deriche (2)

• Let us set α = mω :

case 1

case 2

case 3

case 1 : the best, corresponds to Sxe-α|x|

case 2 : for same value of k, performance
index of Deriche increase of 25 %
case 3 : for same value of k, performance
index of Deriche increase of 90 %

2006 52

Optimal filtering : Deriche (3)

• optimal integrator: S(α|x|+1)e-α|x|

• bidimensionnal filters:
fx(x,y) = k1m e-α|m| k2(α |n|+1) e-α|n|

fy(x,y) = k1(α |m|+1) e-α|m| k2n e-α|n|

• recursive implementation

2006 53

 Recursive implementation
• Phase 1

for m from 0 to (w-1) :
for n from 0 to (h-1) :

for n from (h-1) to 0 :

for n from 0 to (h-1) :

• Phase 2

for n from 0 to (h-1) :

for m from 0 to (w-1) :

for m from (w-1) to 0 :

for m from 0 to (w-1) :

2006 54

Coefficients for Deriche filters
Smoothing x-derivative y-derivative

2006 55

Deriche smoothing

0.25 0.5 0.75

1 2 3

2006 56

Edges with first derivative by
Deriche

0.5 1 3

2006 57

Laplace by Deriche : sign and zeros

2006 58

An easy image

after Sobel filteringsolEssi3212.jpg

2006 59

Difficult images

2006 60

Regions detection

• Regions are bounded by edges
– detection of closed curves

• linking all edge points
• iterative line fitting
• finding lines or circles or ... with the Hough

transform

• Classification
• Region growing algorithm
• Split and Merge algorithm
• Other approaches :

– snakes, deformable contours, …

2006 61

Iterative endpoint fit

2006 62

 Hough transform

• Well known for lines search
• Based on parameterisation of geometrical

objects
• Transformation to a parameters space
• Quantification of parameters

2006 63

Hough transform of a line

• Line parameterisation:
 ρ = x cos θ + y sin θ
ou
 y = a x + b

• For each point (x,y) labelled as edge pt:
– for each θ value:

• compute ρ = x cos θ + y sin θ
• add a vote for (ρ, θ) : vote[ρ][θ]++;

• Quantification of the parameters space

ρ θ

2006 64

Why does it works ?
example of a line

• For each point that does not belong to
the background, we look for all the lines
that go through this point.

• Each founded line vote once.
• If the points are aligned, each point will

vote for this line. This line will obtain
more votes than any other.

2006 65

Implementation (1)

• We need to determine the interval of
parameter's values :

– a in [amin, amax]

– b in [bmin, bmax]

• We need to determine the quantification
steps (uniform) : ∆ a, ∆ b

• loop : for(a=amin; a <= amax; a+= ∆ a) {...

• uniform quantification of b values

2006 66

Implementation (2)

• What interval ?
– related to the geometrical meaning of the

parameters: we do not want to loose lines

– case y = ax + b :
• the slope varies from - infinite to + infinite

– we consider values from -h to +h
• b varies from h(1-w) to h(w+1)

– case ρ=x cos(θ) + y sin(θ)

• θ varies from 0 to π
• ρ varies from -wτο +ρdiag where ρdiag : image

diagonal

x
y

2006 67

Implementation (3)
• Which step ?

– the smallest the step, the more accurate the
solution but the biggest the image and the highest
the computation time.

– we can deal with 2 stages :
• large interval, large step

• small interval, small step

• Hough transform image:

– of dimensions (amax-amin+1;bmax-bmin+1)

– to be normalized between 0 and 255 before display

– score array: indexes often result of an affine
transform of real parameters values

2006 68

Example of transformed images

parameters space [a,b]
t.q. y=ax+b

parameters space [ρ,θ] s.as
ρ=xcos(θ)+ysin(θ)

a0

b0 θ0

ρ0

2006 69

Result

y = a0x + b0
ρ0 = cos(θ0)x + sin(θ0)y

2006 70

Another example with 5 lines

2006 71

Lines detection in an image

• One line detection in an image :
– finding the point of maximal vote in the Hough

transform image

• Multiple lines detection in an image :
– finding multiple local maxima in the Hough

transform image
• how many maxima ?

• all points below a threshold ?

• The accuracy of the detection depends on
the quantification of the parameters.

2006 72

 Hough transform of a curve

• Same idea as for a line

• Parameterisation :
ax2 + bxy + cy2 = 1

• For each point (x, y) in the image

– for each value of a between amin and amax

• for each value of b between bmin and bmax

– compute c such as ax2 + bxy + cy2 = 1
– ad a vote for (a,b,c): vote[a][b][c]++;

2006 73

Just try it !

• Compute and display the Hough transform
for a line :

• y = ax + b

• ρ = cos(θ)x + sin(θ)y

• Draw, in the original image, the line that
corresponds to the maximal vote

• Find all lines in the image

• Determine the corresponding polygone

2006 74

Connex components labeling

11111111

11111111

11111111

11111000

11110111

11101101

11011011

10110111

3333331010

33333101010

33333101010

33339000

33380111

33702601

35024011

30220111

33333333

33333333

33333333

33333000

33330111

33301101

33011011

30110111

111

3333232

10987654321

image after edge
detection and
thresholding

image of labels after
the first browsing

image of labels
after update

