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Why edge detection ?

• in order to detect an object in a scene
– Example: a robot that wants to play soccer 

• in order to do measures
– objects verification in a factory

• in order to extract informations

• in order to compress image data
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Which primitives ?

• Edges

• Regions 

• Point of interest or corners

• Patterns
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Course's overview
• Edge detection

– A simple example

– Convolution approach
• 1st derivative (Sobel, Kirsch, Prewitt, …)

• 2nd derivative (Laplacien, …)

– Optimal filtering
• Canny, Deriche

• Regions detection
– similarity

– Hough transform

– contour deformation
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Where are the edges ?
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Where are the edges ? (2)

• Let us begin with a very simple image :
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Where are the edges ? (3)

• Let us look closer to the pixels :
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A first filter (1)

• Let us build an new image where each  
pixel (i,j) is obtained from the difference 
between pixel at (i,j) and pixel at (i-1,j)
– pixels are still between 0 and 255: we need 

to transform the results

– positive and negative differences: we only 
need the absolute value

– be careful of image borders !
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A first filter (2)

• Result on our simple image
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A first filter (3)

• Result on another image

Wrong !
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Enhancing our first filter

• We will compose :
– a vertical edge detector

• difference between (i,j) and (i-1,j) :

– Icv(i,j) = I(i,j) – I(i­1,j)

– and an horizontal edge detector
• difference between (i,j) and (i,j-1)

– Ich(i,j)= I(i,j) – I(i,j­1)

– magnitude : Ic = sqrt( Icv(i,j)2 + Ich(i,j)2 )
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Let us try on a single image

• Image without noise :
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Let us try on a real image

h filter

v filter

results γ = 0.3
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More in details
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Other image :
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Conclusion on our first filter

• Drawbacks:
– sensitive to noise
– too many edges detected
– more sensitive to horizontal and vertical 

edges than the others

• Advantages:
– fast
– not difficult to implement
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The ideal edge

• edge = where the 
intensity is not 
continuous

• maxima of the 
derivative

I

x,yI’

x,y
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Intensity derivative

• Definition: 

with h at a maximum of 1
• Approximation :

! that is not really correct 
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Convolution

• Convolution operator with a kernel K

i

j
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Convolution in Java

float [] filtre = {-1.0f, 0.0f, 1.0f, 

    -2.0f, 0.0f, 2.0f, 

    -1.0f, 0.0f, 1.0f };

Kernel kernel = new Kernel(3, 3, filtre);

ConvolveOp cop = new ConvolveOp( kernel, 
ConvolveOp.EDGE_NO_OP, null);

cop.filter(biInput,biOutput);

or:
ConvolveOp.EDGE_ZERO_FILL

! sign
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Roberts filters (1965)

• Magnitude = edge 
strength

• Direction of edge normal 

ou
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Example

y filter

x filter

magnitude 
of result
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Sensibility to noise

• Let us assume : Iobs = Isignal + ε sin(ωx)

• Derivative : I’obs = I’signal + ε ω cos(ωx)

•  ω = 2πf : high frequencies will disturb 
the signal derivative

• we need to eliminate these high 
frequencies : smooting
– mean smoothing
– gaussian smoothing
– exponential filtering, ….
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Mean smooting

• ex: filter 3x3
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 /  9
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Gaussian smoothing
(Marr, 1980)

• h(x,y) = 1/(2π σ 2) exp(-(x2+y2)/(2σ2))

• troncated and discretised gaussian : 

010
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Sobel filter (1970)

• Convolution :
– smoothing [1 2 1 ]
– derivative [1 0 -1]

• Mean of « derivatives » 
at x and x-1  

/ 4

/ 4
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Sobel : results (1)

h filter

v filter 

magnitude
 of result
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Closer
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Sobel : results (2)
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Sobel : results (3)
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Other filters : using more 
directions

• Prewitt (1970)

• Kirsch (1971)

/ 3

/ 15
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Enhancement : thresholding

• we eliminate all the pixels that have a 
value below a minimum threshold 
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How to choose the threshold ?

• Low threshold: all 
edges are detected 
but we have false 
positives

• High threshold: all 
the pixels detected 
are edge pixels but 
we are missing some 
of them (false 
negatives)
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Enhancement (2)

• Hysteresis thresholding

low thres.

high thres.

belongs to the edge
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Laplacian

• Laplacian

• Smoothing and Laplacian : Laplacian of a 
gaussian

/ 4

/ 8
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Laplace : results (1)

γ = 0.3
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Laplace : results (2)

γ = 0.3
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 DOG Laplacian  (80's)
Marr and Hildreth 

• Laplacian seen as the difference between 
two gaussian smoothing filters with 
different kernels

• Edge image : difference between a weakly 
smoothed image and a strongly smoothed 
image
– try it on computers
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Huertas-Médioni (1986)

• Laplacian of a gaussian :

• separation : g1(x).g2(y) + g1(y).g2(x) with:

Example: 1/G0 = 4232 et σ2 = 2 :
g1 = [-1 -6 -17 -17 18 46 18 -17 -17 -6 -1]
g2 = [0 1 5 17 36 46 36 17 5 1 0]
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What about color ?

• Detection on each color component (R, G, 
B) separately and recomposition of the 
color after filtering ?

• Max of the results on each component ?

• Mean ?

• Luminance (Y) ?
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Exercise

• In file ConvolutionFilter.java
– implement the convolution function 

public BufferedImage filter(BufferedImage bin)

• Try the following filters :
– Sobel, Prewitt, Kirsch, Laplace

• Try different gaussian filters
– using different kernels

• Combine filters, smootings et thresholding
– keep the best results
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public ConvolutionFilter(int type) {
super();
name = NAMES[type] + " filter";
filters = new ArrayList();
double [][] filter;
switch(type) {
case NAIVE_X:
    filter = new double [3][3];
    filter[0][0] = 0; filter[0][1] = 0; filter[0][2] = 0;
    filter[1][0] = -1; filter[1][1] = 1; filter[1][2] = 0;
    filter[2][0] = 0; filter[2][1] = 0; filter[2][2] = 0;
    filters.add(filter);
    break;
case NAIVE_Y:
    filter = new double [3][3];
    filter[0][0] = 0; filter[0][1] = -1; filter[0][2] = 0;
    filter[1][0] = 0; filter[1][1] = 1; filter[1][2] = 0;
    filter[2][0] = 0; filter[2][1] = 0; filter[2][2] = 0;
    filters.add(filter);
    break;
case NAIVE:
    filter = new double [3][3];
    filter[0][0] = 0; filter[0][1] = 0; filter[0][2] = 0;
    filter[1][0] = -1; filter[1][1] = 1; filter[1][2] = 0;
    filter[2][0] = 0; filter[2][1] = 0; filter[2][2] = 0;
    filters.add(filter);
    filter = new double [3][3];
    filter[0][0] = 0; filter[0][1] = -1; filter[0][2] = 0;
    filter[1][0] = 0; filter[1][1] = 1; filter[1][2] = 0;
    filter[2][0] = 0; filter[2][1] = 0; filter[2][2] = 0;
    filters.add(filter);

 
case GAUSSIAN3: 
    filter = GAUSSIAN3_FILTER;
    filters.add(filter);
    break;
case GAUSSIAN5: 
    filter = GAUSSIAN5_FILTER;
    filters.add(filter);
    break;

default:
}

    }

public  BufferedImage filter(BufferedImage bin) {
int w = bin.getWidth();
int h = bin.getHeight();
BufferedImage bout = new BufferedImage(w,h,

BufferedImage.TYPE_INT_RGB);
for(int i = 0 ; i < w; i++ )
    for(int j = 0 ; j < h; j++ )

bout.setRGB(i,j,0);

int nbFilters = filters.size();

switch(nbFilters) {
case 0: 
   return bout; 
   break;
case 1:

    .....
. . .

. . .
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Optimal filtering

• Canny (1986)
• impulsional response h(x) such as:

– good detection
– good localisation
– weak multiplicity of maxima due to noise

• we search for an edge 
– of magnitude A
– with an additive gaussian noise of null mean 

and variance n0
2 
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Quality 1: good detection

• The more smoothing, the better the quality 
of the detection
– we want to maximize the ratio signal by 

noise :
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Quality 2: Localisation

• The less smoothing, the better the 
localisation.
– we want to minimize the variance of the 

positions of roots. It is equivalent to 
maximize: 
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Quality 3: unique response

• We want an unique response for one edge 
: we limit the distance between 2 maxima

1 or 2 maxima ?



2006 48

General optimal filter

• Trade-off between Σ and Λ

• Find f maximising ΣΛ under the constraint : 
xmax = k

which consist to solve the differential equation:
2f(x) – 2 λ1f’’(x) + 2λ2f’’’’(x) + λ3 = 0

of general solution :
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Optimal filtering : Canny

• finite impulse response filter [-M;+M]
• constraints :

xmax = kM
f(0) = 0 ; f(M) = 0;
f’(0) = S; f’(M) = 0;
x<0 : f(x) = -f(-x)

• numerical optimisation : ΣΛ = 1.12

• approximation : derivative of a gaussian (ΣΛ = 
0.92, k = 0.51, 20% lower performance)
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Optimal filtering : Deriche (1987)

• infinite impulse response filtering

• constraints :
f(0) = 0 ; f(+∞) = 0 ; f’(0) = S ; f’(+∞) = 0;

• where : 
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Optimal filtering: Deriche (2)

• Let us set α = mω :

case 1

case 2

case 3

case 1 : the best, corresponds to Sxe-α|x|

case 2 : for same value of k, performance 
index of Deriche increase of 25 %
case 3 : for same value of k, performance 
index of Deriche increase of 90 %
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Optimal filtering : Deriche (3)

• optimal integrator: S(α|x|+1)e-α|x|

• bidimensionnal filters:
fx(x,y) = k1m e-α|m| k2(α  |n|+1) e-α|n|

fy(x,y) = k1(α  |m|+1) e-α|m| k2n e-α|n|

• recursive implementation
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 Recursive implementation
• Phase 1

for m from 0 to (w-1) :
for n from 0 to (h-1) :

for n from (h-1) to 0 :

for n from 0 to (h-1) :

• Phase 2

for n from 0 to (h-1) :

for m from 0 to (w-1) :

for m from (w-1) to 0 :

for m from 0 to (w-1) :
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Coefficients for Deriche filters
Smoothing x-derivative y-derivative
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Deriche smoothing

0.25 0.5 0.75

1 2 3
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Edges with first derivative by  
Deriche

0.5 1 3
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Laplace by Deriche : sign and zeros
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An easy image

after Sobel filteringsolEssi3212.jpg
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Difficult images
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Regions detection

• Regions are bounded by edges
– detection of closed curves

• linking all edge points
• iterative line fitting
• finding lines or circles or ... with the Hough 

transform

• Classification
• Region growing algorithm
• Split and Merge algorithm
• Other approaches :

– snakes, deformable contours, …
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Iterative endpoint fit
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 Hough transform

• Well known for lines search
• Based on parameterisation of geometrical 

objects
• Transformation to a parameters space
• Quantification of parameters
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Hough transform of a line

• Line parameterisation:
 ρ = x cos θ + y sin θ
ou
 y = a x + b

• For each point (x,y) labelled as edge pt:
– for each θ  value:

• compute ρ = x cos θ + y sin θ
• add a vote for (ρ, θ) : vote[ρ][θ]++;

• Quantification of the parameters space

ρ θ
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Why does it works ?
example of a line

• For each point that does not belong to 
the background, we look for all the lines 
that go through this point.

• Each founded line vote once.
• If the points are aligned, each point will 

vote for this line. This line will obtain 
more votes than any other. 
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Implementation (1)

• We need to determine the interval of 
parameter's values :

– a in [amin, amax]

– b in [bmin, bmax]

• We need to determine the quantification 
steps (uniform) : ∆  a, ∆  b

• loop : for(a=amin; a <= amax; a+= ∆  a) {...

• uniform quantification of b values
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Implementation (2)

• What interval ? 
– related to the geometrical meaning of the 

parameters: we do not want to loose lines

– case y = ax + b :
• the slope varies from - infinite to + infinite

– we consider values from -h to +h
• b varies from h(1-w) to h(w+1)

– case ρ=x cos(θ) + y sin(θ)

• θ varies from 0 to π
• ρ varies from -wτο +ρdiag where ρdiag : image 

diagonal

x
y
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Implementation (3)
• Which step ?

– the smallest the step, the more accurate the 
solution but the biggest the image and the highest  
the computation time.

– we can deal with 2 stages :
• large interval, large step

• small interval, small step

• Hough transform image:

– of dimensions (amax-amin+1;bmax-bmin+1)

– to be normalized between 0 and 255 before display 

– score array: indexes often result of an affine 
transform of real parameters values
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Example of transformed images

parameters space [a,b] 
t.q. y=ax+b

parameters space [ρ,θ] s.as 
ρ=xcos(θ)+ysin(θ)

a0

b0 θ0

ρ0
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Result

y = a0x + b0
ρ0 = cos(θ0)x + sin(θ0)y



2006 70

Another example with 5 lines
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Lines detection in an image

• One line detection in an image :
– finding the point of maximal vote in the Hough 

transform image

• Multiple lines detection in an image :
– finding multiple local maxima in the Hough 

transform image
• how many maxima ?

• all points below a threshold ?

• The accuracy of the detection depends on 
the quantification of the parameters.
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 Hough transform of a curve

• Same idea as for a line

• Parameterisation :
ax2 + bxy + cy2 = 1

• For each point (x, y) in the image

– for each value of a between amin and amax

• for each value of b between bmin and bmax

– compute c such as ax2 + bxy + cy2 = 1
– ad a vote for (a,b,c): vote[a][b][c]++;
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Just try it !

• Compute and display the Hough transform 
for a line :

• y = ax + b

• ρ = cos(θ)x + sin(θ)y

• Draw, in the original image, the line that 
corresponds to the maximal vote

• Find all lines in the image

• Determine the corresponding polygone 
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Connex components labeling

11111111

11111111

11111111

11111000

11110111

11101101

11011011

10110111

3333331010

33333101010

33333101010

33339000

33380111

33702601

35024011

30220111

33333333

33333333

33333333

33333000

33330111

33301101

33011011

30110111

111

3333232

10987654321

image after edge
detection and 
thresholding

image of labels after
the first browsing

image of labels 
after update


