Protocoles de validation pour transactions en environnement mobile : première étude

Christophe Bobineau, Cyril Labbé, Claudia-Lucia Roncancio, Patricia Serrano-Alvarado
Prénom.Nom@imag.fr

Laboratoire LSR-IMAG
Grenoble
Problématique
Objectif

- Général
 - Comparaison qualitative
 - Domaines applicatifs
 - Comparaison quantitative
 - Indices de performance

- Première étude
 - Étude qualitative
 - Phase de validation
 - 3 protocoles (2PC, UCM, CO2PC)
Protocole 2PC

- Protocole standard
 - Non prévu pour l'environnement mobile
 - 2 phases (vote et décision)
- Annulation à tort
 - Dépassement de timeout
- Blocage en cas de déconnexion
 - Coordinateur
 - Participant

Diagramme de la phase 2: Coord P1 P2
- Prepare
- Vote
- R/A
- C/A
- Decision
- Ack_Decision

A : Abort
R : Ready
E : End transaction
R/A : R ou A
C/A : C ou A

R : Begin
C : Commit
Protocole UCM

Unilateral Commit Protocol for Mobile andDisconnected Computing

- Conçu pour l’environnement mobile
 - 1 seule phase
 - Propriétés transactionnelles assurées avant validation
- Pas d’annulation à tort
- Blocage en cas de déconnexion
 - Coordinateur uniquement

Diagramme

- Coord
- P1
- P2

- B : Begin
- C : Commit
- A : Abort
- R : Ready
- E : End transaction
- R/A : R ou A
- C/A : C ou A
Protocole CO2PC

Combination of Optimistic and 2PC

- Conçu pour l’environnement mobile (atomicité sémantique)
 - 1 phase et demi
 - Vote immédiat après exécution
 - Participants optimistes
 - Validation immédiate
 - (Compensation)
 - Participants pessimistes
 - 2PC local
- Annulation à tort
- Blocage en cas de déconnexion
 - Coordinateur
 - Participants pessimistes

\[\text{Coord P1 P2}\]

\[\text{Vote R/A Vote R/A}\]

\[\text{Decision C/A Decision C/A}\]

\[\text{Ack Decision C/A Ack Decision C/A}\]

\[\text{To E B : Begin C : Commit A : Abort R : Ready E : End transaction R/A : R ou A C/A : C ou A}\]
Comparaison : Indices de performance

- **Paramètres**
 - Nombre de participants mobiles
 - « Qualité » de la connexion sans fil

- **Mesures**
 - Durée moyenne de validation
 - Probabilité de blocage du coordinateur
 - Probabilité d’annulation à tort
Probabilité de blocage du coordinateur

- Probabilité de quitter définitivement le système : 5%
- Timeouts : temps nécessaire + 50%
- Connectivité au réseau sans fil :
 - CTX1 : 90%
 - CTX2 : 50%
 - CTX3 : 10%
Durée moyenne de validation

- Probabilité de quitter définitivement le système : 5%
- Timeouts : temps nécessaire + 50%
- Connectivité au réseau sans fil :
 - CTX1 : 90%
 - CTX2 : 50%
 - CTX3 : 10%
Probabilité d’annulation à tort

90% connecté au réseau sans fil
Timeouts : temps nécessaire + 50%

Probabilité de quitter définitivement le système :
- CTX4 : 5%
- CTX5 : 15%
- CTX6 : 30%
Durée moyenne de validation

- 90% connecté au réseau sans fil
- Timeouts : temps nécessaire + 50%

Probabilité de quitter définitivement le système :
- CTX4 : 5%
- CTX5 : 15%
- CTX6 : 30%
Conclusion et perspectives

- Bon comportement en connectivité moyenne
- Adaptation aux dégradations
 - Protocoles les plus « rapides et économiques »
- Classement : UCM, CO2PC, 2PC
- Reste à faire :
 - Influence des timeouts
 - Transaction entière
 - Comportement des participants
 - Autres protocoles
 - Étude qualitative
Questions ?