A First Step to the Evaluation of SimGrid in the Context of a Real Application

Abdou Guermouche and Hélène Renard,
LaBRI/Univ Bordeaux 1 – I3S/École polytechnique universitaire de Nice-Sophia Antipolis

April 19, 2010
Plan of presentation

1. Framework
 - Data redistribution algorithms
 - Heat propagation

2. Real-life and simulation
 - Grid’5000 vs SimGrid
 - Wrekavoc

3. Experimental results

4. Conclusion
Plan of presentation

1. Framework
 - Data redistribution algorithms
 - Heat propagation

2. Real-life and simulation
 - Grid’5000 vs SimGrid
 - Wrekavoc

3. Experimental results

4. Conclusion
Plan of presentation

1. Framework
 - Data redistribution algorithms
 - Heat propagation

2. Real-life and simulation
 - Grid’5000 vs SimGrid
 - Wrekavoc

3. Experimental results

4. Conclusion
Target platforms: distributed heterogeneous platforms (network of workstations, clusters of clusters, grids, etc.)

1. Various sources of load imbalance: application requirements / platform.
2. The data must be redistributed to achieve a better load balancing.
3. No discussion of the mechanism of load balancing we consider it as given.
The algorithm operates on a wide array of rectangular sample data:

- The array is split in vertical slices;
- This geometric constraint recommends that processors must be organized as a virtual ring:
 - Each processor only communicates twice (once with each neighbor).

Figure: Communication scheme.
Redistribution problem for heterogeneous bidirectional rings

Definition

A redistribution is light if each processor initially owns all data that it will send during the execution of the algorithm.

Minimize \(\tau \) **subject to**

\[
\begin{align*}
S_{i,i+1} &\geq 0 & 1 \leq i \leq n \\
S_{i,i-1} &\geq 0 & 1 \leq i \leq n \\
S_{i,i+1} + S_{i,i-1} - S_{i+1,i} - S_{i-1,i} &= \delta_i & 1 \leq i \leq n \\
S_{i,i+1}c_{i,i+1} + S_{i,i-1}c_{i,i-1} &\leq \tau & 1 \leq i \leq n \\
S_{i+1,i}c_{i+1,i} + S_{i-1,i}c_{i-1,i} &\leq \tau & 1 \leq i \leq n
\end{align*}
\]

(1)

To lead to ...

We can use the solution of System 1 safely.
Plan of presentation

1. Framework
 - Data redistribution algorithms
 - Heat propagation

2. Real-life and simulation
 - Grid’5000 vs SimGrid
 - Wrekavoc

3. Experimental results

4. Conclusion
Laplace equation

Context

- A metal plate to which is applied a source of heat from the edges.
- The heat will spread within plate.
- The temperature at the edges is kept constant, the heat distribution in the plate tends to a stationary state.

Laplace equation:
\[
\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0
\]
Laplace equation: \[
\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0
\]

Resolution:

1. Approximating the solution \(\Rightarrow\) discretization \(\Rightarrow\) grid \(n^2\) points

2. Using finite differences on the Laplace equation, this is equivalent to iteratively solve the following equation:

\[4x_{i,j} - (x_{i-1,j} + x_{i+1,j} + x_{i,j-1} + x_{i,j+1}) = 0\]
Laplace equation: \[\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0 \]

- Same pattern of communication as the ring of processors
- Communication only with immediate neighbors.

Figure: Communication scheme.

3. Solving a linear system
 - **Jacobi**, since it is of the form: \(Ax = b \), with \(A \) and \(x \) as

\[
\begin{pmatrix}
\vdots & \vdots & \vdots & \vdots & \vdots \\
-1 & -1 & 4 & -1 & -1 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\end{pmatrix}
\begin{pmatrix}
x_{1,1} \\
x_{1,2} \\
\vdots \\
x_{n,n-1} \\
x_{n,n}
\end{pmatrix} = b
\]
Plan of presentation

1. Framework
 - Data redistribution algorithms
 - Heat propagation

2. Real-life and simulation
 - Grid’5000 vs SimGrid
 - Wrekavoc

3. Experimental results

4. Conclusion
Plan of presentation

1. Framework
 - Data redistribution algorithms
 - Heat propagation

2. Real-life and simulation
 - Grid’5000 vs SimGrid
 - Wrekavoc

3. Experimental results

4. Conclusion
Grid’5000 vs SimGrid

Goal: Compare the behavior of algorithms for load balancing and data redistribution on two different « platforms »:

° Grid’5000
° SimGrid

Figure: Grid 5000

Figure: SimGrid
The master and the workers

Figure: Experimental scheme: the master and the workers.

- This organization is used in both the simulated and real-life context.
- The difference comes from the monitor which is given by SimGrid in the simulated context.
The master and the workers

Master:

- Gather the results of the measurements.
- Call the redistribution algorithms when needed.

Figure: Experimental scheme: the master and the workers.
The master and the workers

Monitor:

 Modiﬁy (using wrekavoc) the characteristics of the platform.

Figure: Experimental scheme: the master and the workers.
The **master and the workers**

Figure: Experimental scheme: the *master* and the *workers*.

Slaves:
- Do all the computations and communications.
- Exchange data for redistribution according to the results of the master.
Plan of presentation

1. Framework
 - Data redistribution algorithms
 - Heat propagation

2. Real-life and simulation
 - Grid’5000 vs SimGrid
 - Wrekavoc

3. Experimental results

4. Conclusion
I. In our context, Wrekavoc is used to
- control CPU and network capabilities;
- of randomly chosen resources;
- in order to study the behavior of the application.

Figure: Wrekavoc in pictures
Grid’5000 vs SimGrid

1. Real and simulated execution:
 - Retrieve through measurements:
 - processor speed
 - network latency
 - inbound bandwidth
 - ...

2. Differences:
 - Real execution: the modification of the characteristics of the platform are done using \texttt{wrekavoc},
 - Simulated execution: the modification of the characteristics of the platform is a built-in functionality of SimGrid.
Plan of presentation

1. Framework
 - Data redistribution algorithms
 - Heat propagation

2. Real-life and simulation
 - Grid’5000 vs SimGrid
 - Wrekavoc

3. Experimental results

4. Conclusion
Grid’5000 vs SimGrid

(a) No platform variation.
(b) With platform variation (3 platform variations, once every 29 iterations).

Figure: Time needed (in seconds) for each iteration on the real-life and the simulated platform: one site platform.
Experimental results

Grid’5000 vs SimGrid

(a) No platform variation.

(b) With platform variation (3 platform variations, once every 29 iterations).

Figure: Time needed (in seconds) for each iteration on the real-life and the simulated platform: two sites platform.
Experimental results

Grid’5000 vs SimGrid

(a) No platform variation.
(b) With platform variation
(3 platform variations, once every 29 iterations).

Figure: Time needed (in seconds) for each iteration on the real-life and the simulated platform: five sites platform.
Experimental results

Grid’5000 vs SimGrid

(a) No platform variation.
(b) With platform variation (3 platform variations, once every 29 iterations).

Figure: Time needed (in seconds) for each iteration on the real-life and the simulated platform: two sites platform. Each iteration is three time more costly than a regular one.
Plan of presentation

1. Framework
 - Data redistribution algorithms
 - Heat propagation

2. Real-life and simulation
 - Grid’5000 vs SimGrid
 - Wrekavoc

3. Experimental results

4. Conclusion
1. Two versions of the same application: the propagation of heat
 - Simulated implementation on top of SimGrid.
 - Real-life implementation running on the Grid’5000 platform.
 - Using wrekavoc to control the characteristics of the platform.
 - Use the same platform characteristics over time in the two contexts.

2. The observed behavior for the simulated case is very close to that of a real execution.

3. A first step for validation of SimGrid in the context of complex applications.