Introducton

- The reconfigurable hardware devices are commonly used in real-time systems; these devices are featured by a high density of heterogeneous resources, by the multitasking and supply a reasonable flexibility to applications need.
- Efficient management of hardware tasks and hardware resources is strongly required. But the scheduling and the placement methods suffer from the issues of fragmentation, tasks rejection, overheads, high power consumption.
- Requiring a novel method of placement which aims at the optimized use of the resources and targets all above mentioned issues.
- Placement sub-functions:
 - Partitioning: Handling free space.
 - Fitting: Selection of a feasible placement solution.

Terminology

- Device level: The device is a set of heterogeneous resources \(n_i \).
- Application Level: Tasks (Tj) are featured by:
 - Physical model: \(T_{j,PHY} = (a_{ij}, t_{j}) \).
 - Functional model: Period (Pj), WCET (Cj), Deadline, Priority.
- Conceptual level: There are four elements:
 - Static Region (SR) = \(\{ b_{ij}, t_{ij} \} \) (Static components).
 - Reconfigurable Region (RRj). The free space of heterogeneous resources dedicated for placing tasks.
 - \(R_{j,PHY} = (a_{ij}, t_{j}) \) (N.RZi) ⊂ RRj.
 - Reconfigurable Zone (RZj): Virtual block of heterogeneous resources specialized for a class of hardware tasks.
- Reconfigurable Bloc (RBj): The smallest abstraction unit matching the reconfiguration granularity (DIVj) in the device.

Flow of Classification of Hardware Tasks

STEP 1: RZs Types search

Step 1: RZs types search or hardware tasks classes search

- RZ reference = 0 // reference of RZ types
- RZ: list of all RZ types
- For all tasks Ti ∈ \(T \):
 - \(T_{i,PHY} = (a_{ij}, t_{j}) \)
 - \(T_{j,PHY} = (a_{ij}, t_{j}) \)
 - \(R_{j,PHY} = (a_{ij}, t_{j}) \) in \(N.RZ \)
 - \(R_{j,PHY} = (a_{ij}, t_{j}) \) in \(R.Z \)
 - \(R_{j,PHY} = (a_{ij}, t_{j}) \) in \(R.Z \)

STEP 2: Hardware Tasks Classification

- Computing of Occupation rate of each RZj:
 \[\text{Occupation rate of } RZ_j = \frac{\sum a_{ij}}{P_i} \]
- Computing of costs D between tasks and their non-optimal RZj:
 \[d_{ijk} = X_{i,k} - Z_{j,k} \]

STEP 3: RBs/RZs Increasing

Step 3 is performed when an overload within RZj is detected

- **Action 1:** Increasing the number of reloaded RZ types (RZj) till their overload is covered.
 \[\text{Number overloaded } RZ_j = \frac{\sum a_{ij}}{P_i} \]

- **Action 2:** Adding RBs to a non-overloaded RZ, and accepting tasks having optimal overload RZ and giving Und distance with them. RZj increases the RBs as required by these tasks.

Off-line Placement of RZs and on-line Mapping of Hardware Tasks

- As *Generic Placement*, Placement/Mapping consists of:
 - Partitioning: searching RPBs for each RZ
 - Two-level fitting:
 - Placing RZs on selected RPBs.
 - Mapping Tasks on placed RZs with specified occupation rates (\(\Omega_i \)).
- Place/Mapping is a problem of optimization under constraints (K,D,F):
 - \(X = (X_1, X_2) \):
 - \(X_1 \): coordinates of RPBs.
 - \(X_2 \): coordinates of RZs.
 - \(D = (D_1, D_2) \): set of domains of values for \(X \).
 - C: set of constraints
 - Objective function evaluating:
 - Resources efficiency.
 - Optimal mapping.
 - Communication cost.

- **Proposal of an Exhaustive Placement/Mapping**
 - exhaustive_placement(input A, input X1,D1,C), output solution)
 - Begin
 - If all variables of X1 are assigned to a value in A then
 - A is a complete assignment for all variables X1 are placed?
 - Exhaustive_placement(RZ(D2,C2), solution)
 - Begin
 - End
 - Else
 - A is a partial assignment: some tasks are not all placed?
 - Choose a variable Z from X1 which is not assigned to a value in A
 - For all value \(V \) in D1 Do
 - \(A = A \cup (V, Z) \)
 - Exhaustive_placement(A, X1,D1,C), solution)
 - End
 - End

- **Conclusion**:
 - The proposed exhaustive Placement/Mapping increases exponentially with the number of RZs and with the number of tasks.
 - For example, to place 6 RZs and to map 8 tasks in Virtex V SX50 device the research space for this problem has a size of: \((33386248) \times (8)^{26} \)
 - Placement/Mapping problem is NP-complete problem. It could be resolved by means of:
 - Complete methods as: Branch and Bound, dynamic programmation, etc.
 - Methaheuristics as: evolutionary methods, proximity methods and hybrid methods.